基于運動特征的軌跡相似性度量研究
[Abstract]:With the development of various positioning (such as Beidou, GPS, etc.) and the wireless communication technology, the space-time track data of a large number of moving objects is acquired by human beings, and the time-space trajectory data mining has become the current research hotspot, and in the intelligent transportation system and the climate monitoring, and is of great significance in the fields of sports ecology and the like. The motion feature is the characteristic of the moving object, such as speed, acceleration, etc., which can be distinguished from other objects. It is the important attribute of the moving object, which can reflect the intrinsic characteristics of the moving object and the influence of the external environment on its movement. The similarity measure of the track is one of the core problems of the track data mining. This paper studies the track similarity measure based on the motion feature, which can be used in the application of similarity query and motion pattern discovery. In this paper, the motion characteristics of the track are the main line, the similarity measure of the track is further studied, the new track similarity measure based on the motion characteristics is improved and developed, and the method is applied to the related application, and the main work and the result of the paper are as follows: 1, On the basis of summarizing and refining existing motion parameters and motion characteristics, a track similarity measure based on hierarchical motion characteristics and classification learning is proposed and applied to mobile object recognition. the similarity measure is used for extracting global and local motion characteristics respectively to form a hierarchical motion feature, The hierarchical motion feature and the classification learning method support vector machine to construct the similarity measure. the experiments on the three real track data sets show that the similarity measure is strong, the recognition accuracy of the moving target is obviously improved compared with the existing method, and the track similarity measure based on the multiple motion characteristics is proposed, and is applied to a motion sequence pattern discovery based on multiple motion characteristics. the similarity measure refers to the idea of the data cube, and the multi-motion parameter time series is quantized and symbolized, the distance between the two symbols is calculated in the multi-motion characteristic value range space, Finally, a weighted edit distance is used as the similarity measure. The similarity measure reflects the evolution trend of the multiple motion characteristics, that is, the motion sequence mode. In this paper, the similarity measure is combined with the spectrum-based method to find that the Atlantic hurricane data is an example, the effectiveness of the method is verified by the occurrence and movement of the hurricane in the meteorological document, and the sequence pattern of the multi-motion characteristics of the hurricane is analyzed. In this paper, the space-time similarity measure of the motion feature is proposed, and it is applied to the trace-time distribution pattern discovery based on the motion feature. The similarity measure combines the spatial distance, the time distance and the moving feature distance. The spatial distance is measured by the edit distance (EDR, Edit Distance on Real Sequence) on the real sequence, the moving feature distance is measured using a normalized weighted edit distance (NWED, Normalised Weight Edit Distance), the time distance is measured using the starting distance, the end distance and the duration of the trajectory, and finally, the three distances are effectively and flexibly combined into a track space-time similarity measure of the fusion motion characteristic by a weighted average mode. By combining the similarity measure and the spectrum-based method, the spatial-temporal distribution pattern based on the motion characteristics is found, the effectiveness of the method is verified by the distribution law of the hurricane in the space and the season in the meteorological document, and the time-space distribution rule of the track based on the characteristic of the hurricane speed is analyzed. The paper improves and develops the track similarity measure based on the motion feature, and advances the theory and application of the track similarity, and provides valuable research results for the track data mining.
【學位授予單位】:南京師范大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:P208;P425
【相似文獻】
相關(guān)期刊論文 前10條
1 謝明霞;王家耀;郭建忠;陳科;;不等距劃分的高維相似性度量方法研究[J];武漢大學學報(信息科學版);2012年07期
2 賀玲;吳玲達;蔡益朝;;高維空間中數(shù)據(jù)的相似性度量[J];數(shù)學的實踐與認識;2006年09期
3 隋正偉;鄔陽;劉瑜;;基于簽到數(shù)據(jù)的用戶空間出行相似性度量方法研究[J];地理信息世界;2013年03期
4 李海林;郭崇慧;;基于多維形態(tài)特征表示的時間序列相似性度量[J];系統(tǒng)工程理論與實踐;2013年04期
5 楊艷春;孟祥武;;基于關(guān)鍵詞的對等網(wǎng)絡節(jié)點群相似性度量模型研究[J];武漢大學學報(理學版);2011年06期
6 李永寧;一種基于紋理的圖象相似性度量模型(英文)[J];四川大學學報(自然科學版);2003年02期
7 胡茂海;;基于相關(guān)輸出相似性度量的目標識別算法[J];中國激光;2012年04期
8 劉丹;衛(wèi)金茂;張杰;;GO術(shù)語間語義相似性度量方法[J];東北師大學報(自然科學版);2010年01期
9 杜培軍;唐宏;方濤;;高光譜遙感光譜相似性度量算法與若干新方法研究[J];武漢大學學報(信息科學版);2006年02期
10 郭銘銘;竇建華;楊彬;;基于形式化概念分析和概念相似性度量的程序重組方法(英文)[J];南京大學學報(自然科學版);2011年05期
相關(guān)會議論文 前10條
1 劉喜平;萬常選;;一種二維的樹型文檔結(jié)構(gòu)相似性度量[A];第二十五屆中國數(shù)據(jù)庫學術(shù)會議論文集(二)[C];2008年
2 劉俊義;王潤生;;仿射不變的多邊形相似性度量[A];中國圖象圖形科學技術(shù)新進展——第九屆全國圖象圖形科技大會論文集[C];1998年
3 楊艷春;孟祥武;;P2P網(wǎng)絡服務環(huán)境中的節(jié)點相似性度量研究[A];CCF NCSC 2011——第二屆中國計算機學會服務計算學術(shù)會議論文集[C];2011年
4 李彬彬;羅樂;;基于信源學的光譜相似性度量方法的比較研究[A];2009全國計算機網(wǎng)絡與通信學術(shù)會議論文集[C];2009年
5 羅陽;趙偉;;相似性度量研究及最優(yōu)相似系數(shù)[A];中國氣象學會2008年年會天氣預報準確率與公共氣象服務分會場論文集[C];2008年
6 周曉蕾;唐明浩;於思俊;;服裝款式系統(tǒng)中的相似性度量算法研究[A];2008年中國高校通信類院系學術(shù)研討會論文集(下冊)[C];2009年
7 劉寶生;閆莉萍;周東華;;圖像匹配中相似性度量[A];第16屆中國過程控制學術(shù)年會暨第4屆全國故障診斷與安全性學術(shù)會議論文集[C];2005年
8 李新光;鄭君君;祝一薇;劉建軍;夏勝平;譚立球;;基于屬性圖模型的圖像相似性度量[A];第十五屆全國圖象圖形學學術(shù)會議論文集[C];2010年
9 沈君;馬生全;;兩種新的相似性度量在模糊推理中的應用[A];中國運籌學會模糊信息與模糊工程分會第五屆學術(shù)年會論文集[C];2010年
10 廉鑫;林偉堅;張海威;袁曉潔;;基于雙向路徑約束模型的XML文檔結(jié)構(gòu)相似性度量[A];NDBC2010第27屆中國數(shù)據(jù)庫學術(shù)會議論文集(B輯)[C];2010年
相關(guān)博士學位論文 前7條
1 趙秀麗;基于有趣地點壓縮的移動點對象時空軌跡聚類研究[D];北京交通大學;2016年
2 朱進;基于運動特征的軌跡相似性度量研究[D];南京師范大學;2015年
3 白雪;聚類分析中的相似性度量及其應用研究[D];北京交通大學;2012年
4 張明;基于內(nèi)容的圖象相似性度量技術(shù)研究及其在水利中的應用[D];河海大學;2003年
5 邱明;語義相似性度量及其在設(shè)計管理系統(tǒng)中的應用[D];浙江大學;2006年
6 周瑜;視頻跟蹤中的目標建模及相似性度量研究[D];華中科技大學;2014年
7 戚文靜;基于范例的圖案創(chuàng)作關(guān)鍵技術(shù)研究[D];山東大學;2012年
相關(guān)碩士學位論文 前10條
1 曹莉莉;基于GC-MS的高速譜庫搜索算法研究[D];安徽大學;2015年
2 蔣欣;基于粒子濾波的故障預報算法研究[D];福建師范大學;2015年
3 張豪;符號序列相似性度量及聚類新算法[D];福建師范大學;2015年
4 周漢海;基于少量選點的社團檢測算法研究[D];蘭州大學;2015年
5 張考;面向電子商務的虛假評論檢測的關(guān)鍵技術(shù)研究[D];解放軍信息工程大學;2015年
6 張靜轉(zhuǎn);基于集對相似性度量的社區(qū)發(fā)現(xiàn)算法研究[D];燕山大學;2016年
7 張婷;基于近鄰協(xié)同過濾算法中相似性度量的研究[D];西南交通大學;2016年
8 黃_g;相似性度量的研究及其在數(shù)據(jù)挖掘中的應用[D];福建師范大學;2009年
9 練仕榴;生物醫(yī)學信號的相似性度量研究[D];天津理工大學;2011年
10 朱波;程序代碼相似性度量方法研究[D];長春工業(yè)大學;2015年
,本文編號:2340515
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2340515.html