雙極化SAR影像分類研究與應(yīng)用
[Abstract]:Based on the study of the characteristics of ALOSPALSAR bipolar SAR data and the scattering mechanism of ground objects, the feature parameters extracted by the polarimetric target decomposition method are used to classify and process the dual-polarized SAR images in order to improve the classification accuracy of the polarimetric SAR images. Compared with optical data and traditional radar data, polarimetric SAR data not only includes amplitude information, but also has phase information, so the data record abundant backscattering information in different polarimetric states of each resolution unit. Based on the characteristics of polarimetric radar, which is not affected by day and night clouds, can penetrate vegetation and shallow surface, multi-band and multi-polarization, high-resolution active imaging, polarimetric SAR radar in urban planning and change, crop growth, Geological bodies and geological phenomena (hidden), geological hazards and other aspects of monitoring and mapping have unique advantages. Due to the location of the object, the surface geometry and dielectric properties, the echo received by polarized SAR has a complex scattering process. When analyzing the imaging mechanism of polarimetric SAR, Some parameters representing the properties of objects must be extracted from these complex scattering echoes, and the target decomposition method emerges as the times require. This paper focuses on revealing the scattering mechanism of ground objects represented by the extraction parameters of polarimetric SAR targets and improving the classification accuracy of dual-polarized SAR images, and studies the ground objects classification in Changbai Mountain area. The results are as follows: 1. The dual-polarization SAR image in this study has the phenomenon of data compression and speckle noise. In order to ensure the accuracy of information extraction, a series of preprocessing of the image data is carried out. By analyzing the statistical characteristics of speckle and the noise model, combining the characteristics of dual-polarized SAR images, the multi-view processing of ALOSPALSAR dual-polarization data is carried out, which improves the radiative resolution of polarized SAR images. Then, three filtering algorithms, Boxcar,Lee-sigma and enhanced Lee, are used to compare and analyze the noise reduction of the multi-view image. Each filtering algorithm can reduce the noise, and the enhanced Lee filter is the most effective to suppress speckle noise. Keeping spatial resolution and polarization information is a high performance and high quality filtering method. 2. The conventional radar data are classified by ML and SVM respectively. Compared with ML's classification algorithm, SVM improves the accuracy of ground object classification, and verifies that the choice of classifier directly affects the classification quality of polarimetric SAR images. 3. Extraction of polarization characteristic parameters. Through the Cloude target decomposition of the coherent matrix of dual-polarized SAR data, four characteristic parameters reflecting the scattering mechanism of the target are extracted. The analysis shows that the four parameters represent the scattering information and physical significance of the ground objects under different scattering mechanisms. It provides an effective feature parameter set for polarimetric SAR image classification based on target decomposition. This is the characteristic of this thesis. 4. Realization of dual-polarization SAR image classification algorithm based on Cloude target decomposition. Because the characteristic parameters obtained by target decomposition have definite physical significance, it is effective and feasible to apply target decomposition technology to the classification of polarimetric SAR images. In this paper, the feature parameters obtained from the target decomposition are combined with the high performance SVM classifier to realize the ground object classification algorithm for the dual-polarization SAR images. The results show that the classification accuracy of dual-polarization SAR images based on target decomposition is higher than that of conventional radar data, and all kinds of ground objects can be separated accurately. The polarimetric target decomposition method can be used as an effective technique for the classification of bipolar SAR images.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:P225.1;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐豐;金亞秋;;目標(biāo)散射的去取向理論和應(yīng)用(二)地表分類應(yīng)用[J];電波科學(xué)學(xué)報(bào);2006年02期
2 楊虎,郭華東,李新武,岳煥印;極化雷達(dá)目標(biāo)信息分解技術(shù)及其在古湖岸線探測(cè)中的應(yīng)用[J];地球信息科學(xué);2003年02期
3 李春升,燕英,陳杰,黃巖,周蔭清;高分辨率星載SAR單視圖像斑點(diǎn)噪聲抑制實(shí)現(xiàn)方法[J];電子學(xué)報(bào);2000年03期
4 劉國(guó)慶,熊紅,黃順吉,A.Torre,F.Rubertone;多視極化合成孔徑雷達(dá)圖象的分類和極化通道優(yōu)化[J];電子科學(xué)學(xué)刊;1998年01期
5 劉秀清,楊汝良,楊震;雙波段全極化SAR圖像非監(jiān)督分類方法及實(shí)驗(yàn)研究[J];電子與信息學(xué)報(bào);2004年11期
6 吳永輝;計(jì)科峰;郁文賢;;基于H-α和改進(jìn)C-均值的全極化SAR圖像非監(jiān)督分類[J];電子與信息學(xué)報(bào);2007年01期
7 譚衢霖;;SAR遙感數(shù)據(jù)用于巖性識(shí)別與分類的研究[J];地質(zhì)找礦論叢;2009年04期
8 樊祺誠(chéng);隋建立;王團(tuán)華;李霓;孫謙;;長(zhǎng)白山火山活動(dòng)歷史、巖漿演化與噴發(fā)機(jī)制探討[J];高校地質(zhì)學(xué)報(bào);2007年02期
9 吳鋼,肖寒,趙景柱,邵國(guó)凡,李靜;長(zhǎng)白山森林生態(tài)系統(tǒng)服務(wù)功能[J];中國(guó)科學(xué)(C輯:生命科學(xué));2001年05期
10 王紀(jì)珩;殷維剛;沈云秋;趙韶平;;基于C均值和SVM的SAR圖像目標(biāo)分類研究[J];計(jì)算機(jī)與數(shù)字工程;2008年01期
相關(guān)博士學(xué)位論文 前4條
1 汪洋;極化合成孔徑雷達(dá)圖像處理及其應(yīng)用研究[D];安徽大學(xué);2007年
2 吳永輝;極化SAR圖像分類技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2007年
3 代大海;極化雷達(dá)成像及目標(biāo)特征提取研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2008年
4 周曉光;極化SAR圖像分類方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前6條
1 代大海;POLSAR圖像模擬及目標(biāo)檢測(cè)與分類方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2003年
2 袁磊;極化SAR圖像增強(qiáng)與分類技術(shù)研究[D];電子科技大學(xué);2007年
3 賈廣帥;機(jī)載激光雷達(dá)數(shù)據(jù)特點(diǎn)和濾波方法研究[D];山東科技大學(xué);2007年
4 趙力文;基于目標(biāo)分解理論的極化SAR圖像分類方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2007年
5 吳婉瀾;基于子孔徑的極化SAR圖像目標(biāo)分類算法研究[D];電子科技大學(xué);2009年
6 宋才秀;基于地物散射特性分析的機(jī)載極化SAR分類研究[D];中南大學(xué);2012年
本文編號(hào):2300521
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2300521.html