天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 測(cè)繪論文 >

長(zhǎng)測(cè)程地基激光雷達(dá)幾何校正研究

發(fā)布時(shí)間:2018-10-08 19:34
【摘要】:激光雷達(dá)因?yàn)槠淠軌蚩焖佾@取目標(biāo)物的三維空間信息以及具有全天候、精度高、費(fèi)用低等優(yōu)點(diǎn),因此能迅速的在城市、交通、水利等領(lǐng)域中得到了廣泛的應(yīng)用,因此對(duì)于其精度的檢校方面也吸引著許多學(xué)者的研究,F(xiàn)有的測(cè)距校正是基于對(duì)波形參數(shù)的校正,但由于波形參數(shù)校正存在著原始波形數(shù)據(jù)的封閉,而導(dǎo)致波峰探測(cè)和波形校正的方法的不明確。現(xiàn)有的波形參數(shù)提取是基于高斯混合模型對(duì)回波波形的參數(shù)提取,但這種模型假設(shè)存在著與波形數(shù)據(jù)的非線性、非正態(tài)分布形態(tài)和波形尾部抬升不一致性,導(dǎo)致波形參數(shù)提取的精度受限,而相對(duì)輻射校正方法無法直接的得到地物的反射特性;诓ㄐ螀(shù)對(duì)測(cè)距校正的方法也沒有考慮到儀器設(shè)備的衰減因素。此外,二維激光雷達(dá)是通過電流變化來計(jì)算其在水平角上和豎直角上的角度變化量,由于儀器在旋轉(zhuǎn)上存在慣性、電子元件的溫度、電子元件的老化導(dǎo)致水平角、豎直角的量測(cè)不準(zhǔn)確。因此沒有改正的點(diǎn)云數(shù)據(jù)不能有效地反映地物的真實(shí)信息。激光雷達(dá)自身的水平角和豎直角的誤差,也會(huì)影響回波波形。地基激光雷達(dá)的大氣校正和機(jī)載激光雷達(dá)氣校正也存在著很大的差異性,機(jī)載激光雷達(dá)的大氣校正是需要考慮太陽(yáng)高度角、方位角,衛(wèi)星高度角、方位角以及數(shù)據(jù)采集月份與日期。機(jī)載激光雷達(dá)的大氣校正模型是豎直方向的校正,其中大氣中的顆粒大小,顆粒密度都與地基激光雷達(dá)大氣水平方向上存在很大的差異性。本文針對(duì)以上存在的不足,首先解決儀器設(shè)備的指向校正問題。具體研究?jī)?nèi)容包括:儀器設(shè)備的水平角、豎直角和測(cè)距誤差來源,本文設(shè)計(jì)圓形高反標(biāo)標(biāo)靶提取標(biāo)靶中心點(diǎn)的水平角和豎直角,自主設(shè)計(jì)特征柱與特征柱載體,采用3D打印技術(shù)打印特征柱與特征載體,在特征柱表面粘貼反射片制作成特征點(diǎn)。在儀器設(shè)備上布設(shè)特征點(diǎn),通過特征點(diǎn)計(jì)算全站儀坐標(biāo)系到激光雷達(dá)站心坐標(biāo)系的旋轉(zhuǎn)矩陣和平移矩陣,實(shí)現(xiàn)全站儀坐標(biāo)系到儀器站心坐標(biāo)系之間的轉(zhuǎn)換。利用全站儀獲取的圓形標(biāo)靶的中心值作為基準(zhǔn),根據(jù)激光雷達(dá)坐標(biāo)值計(jì)算公式,構(gòu)建誤差方程,基于最小二乘原理,計(jì)算出儀器設(shè)備在水平角和豎直角方向上的系統(tǒng)誤差。經(jīng)過驗(yàn)證改正后的坐標(biāo)值在Y軸方向上精度提高了1mm,在Z軸方向是精度提高了1mm。然后介紹計(jì)算測(cè)距改正值的方法,自主設(shè)計(jì)具有100%反射率的反射板,使用全站儀對(duì)反射板的邊緣點(diǎn)進(jìn)行坐標(biāo)測(cè)量,通過特征點(diǎn)計(jì)算得到的旋轉(zhuǎn)矩陣和平移矩陣,實(shí)現(xiàn)反射板全站儀坐標(biāo)系到激光雷達(dá)坐標(biāo)系的坐標(biāo)轉(zhuǎn)換,并且使用轉(zhuǎn)換后的反射板的邊緣點(diǎn)坐標(biāo)構(gòu)建反射板的平面方程,作為對(duì)激光雷達(dá)測(cè)距校正的約束條件,并將全站儀測(cè)距作為基準(zhǔn)值,通過激光雷達(dá)坐標(biāo)值計(jì)算公式列出誤差方程,基于最小二乘原理,計(jì)算測(cè)距改正值。經(jīng)過驗(yàn)證改正后的測(cè)距值更加的接近全站儀的測(cè)距值。
[Abstract]:Lidar has been widely used in the fields of city, traffic, water conservancy and so on, because it can acquire 3D spatial information of object quickly and has the advantages of all-weather, high precision, low cost, etc. Therefore, the accuracy of the calibration also attracted many scholars. The existing ranging correction is based on the correction of waveform parameters, but because of the closure of the original waveform data, the methods of wave peak detection and waveform correction are not clear. The existing waveform parameters extraction is based on Gao Si mixed model to extract the parameters of echo waveform, but this model assumes that there is nonlinearity with waveform data, non-normal distribution form and wave tail uplift. As a result, the precision of waveform parameter extraction is limited, but the relative radiation correction method can not directly obtain the reflection characteristics of ground objects. The method of ranging correction based on waveform parameters does not take into account the attenuation factor of instrument and equipment. In addition, the two-dimensional lidar calculates the angular variation at the horizontal and vertical angles through current changes. Due to the inertia in the rotation of the instrument, the temperature of the electronic components, and the aging of the electronic components, the horizontal angles are caused. The measurement of vertical angles is inaccurate. Therefore, the point cloud data without correction can not reflect the real information of the objects effectively. The errors of the horizontal and vertical angles of the lidar also affect the echo waveform. There is also a great difference between the atmospheric correction of ground-based lidar and that of airborne lidar. The atmospheric correction of airborne lidar needs to consider the solar altitude angle, azimuth angle and satellite altitude angle. Azimuth and data acquisition month and date. The atmospheric correction model of airborne lidar is vertical correction, in which the particle size and particle density in the atmosphere are very different from those in the horizontal direction of the ground-based lidar. In view of the above shortcomings, this paper first solves the problem of pointing correction of instruments and equipments. The specific research contents include: horizontal angle, vertical angle and ranging error source of the instrument and equipment. In this paper, the horizontal angle and vertical angle of the center point of the target are extracted from the circular high inverse target, and the characteristic column and characteristic column carrier are designed independently. Feature points are made by using 3D printing technology to print feature columns and feature carriers and affixing reflectors on the surface of feature columns. In order to realize the transformation from total station coordinate system to instrument center coordinate system, the rotation matrix and translation matrix of total station coordinate system to laser radar station center coordinate system are calculated. Using the center value of the circular target obtained by the total station as the datum, according to the calculation formula of the lidar coordinate value, the error equation is constructed. Based on the least square principle, the systematic errors of the instrument in the horizontal and vertical angles are calculated. The accuracy of the corrected coordinates is improved by 1mm in the Y-axis direction and 1mm in the Z-axis direction. Then it introduces the method of calculating ranging and correcting positive value, designs the reflective plate with 100% reflectivity, uses the total station instrument to measure the coordinate of the edge point of the reflector, and calculates the rotation matrix and the translation matrix through the characteristic point calculation. The coordinate transformation from the total station coordinate system of reflector to the coordinate system of lidar is realized, and the plane equation of the reflector is constructed by using the coordinate of the edge point of the converted reflector as the constraint condition for the ranging correction of lidar. Taking the total station ranging as the reference value, the error equation is listed through the calculation formula of the lidar coordinate value. Based on the least square principle, the ranging correction value is calculated. After verification, the range value is closer to that of total station.
【學(xué)位授予單位】:江蘇師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P225

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳煥光;;從DM500至DM502[J];工程勘察;1980年03期

2 趙國(guó)忱;測(cè)距儀最佳測(cè)程確定方法的探討[J];阜新礦業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);1990年03期

3 肖立萍;楊錫杰;王學(xué)成;錢軍;;質(zhì)子磁力儀測(cè)程標(biāo)定信號(hào)源的研制[J];地震地磁觀測(cè)與研究;2005年05期

4 郭豪;邱琪;馬娜;劉艷芳;;不同能見度下激光測(cè)距儀最大測(cè)程的數(shù)值算法[J];紅外與激光工程;2013年12期

5 本刊編輯部;儀器消息[J];測(cè)繪科技動(dòng)態(tài);1985年05期

6 周澤遠(yuǎn);;DI3S測(cè)距時(shí)投影改正及比例系數(shù)開關(guān)的應(yīng)用[J];礦山測(cè)量;1981年03期

7 徐榮甫 ,林幼娜 ,劉巽亮;激光測(cè)距機(jī)測(cè)程的室內(nèi)檢測(cè)[J];兵器激光;1984年06期

8 梁芳,孫曉明,強(qiáng)錫富;非合作目標(biāo)相位式激光測(cè)距系統(tǒng)的測(cè)程估計(jì)[J];光學(xué)技術(shù);1999年05期

9 張雛;沈洪斌;周冰;徐春梅;沈?qū)W舉;;激光測(cè)距機(jī)最大測(cè)程評(píng)估方法研究[J];激光與紅外;2008年12期

10 劉學(xué)斌;趙吉先;;全站儀測(cè)程檢驗(yàn)的一種新方法[J];測(cè)繪科學(xué);2006年05期

相關(guān)碩士學(xué)位論文 前2條

1 劉陽(yáng);長(zhǎng)測(cè)程地基激光雷達(dá)幾何校正研究[D];江蘇師范大學(xué);2017年

2 張海洪;遠(yuǎn)距離非合作目標(biāo)激光測(cè)高儀性能驗(yàn)證研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2003年

,

本文編號(hào):2258012

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2258012.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e311d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com