電離層延遲改正模型算法的研究與探討
[Abstract]:Ionosphere is the atmosphere of the earth's surface from 50 km to several thousand km. Due to solar radiation, the atmosphere in this region is weakly ionized, producing a large number of free electrons and ions. These particles have a great impact on radio waves, resulting in GNSS delays up to several meters or even hundreds of meters. In addition, satellite navigation systems are entering a new era. Beidou navigation systems in China, Galileo navigation systems in Europe and regional navigation systems, such as QZSS and NAVIC systems, are developing rapidly, in addition to existing GPS and GLONASS global navigation systems. Based on this situation, a series of research work on ionospheric delay correction has been carried out in this paper. The main work and innovations of this paper are as follows: 1. The user algorithms of GPSK8, Galileo NeQuick G, BDSK8, BDSK14, BDSSH broadcasting ionospheric delay correction models are introduced in detail, and the performances of several models in different regions are evaluated. In China, the BDSSH model has the best performance, the correction rate is above 75%, the RMS precision is within 5 TECU, and the correction effect is BDSSH, BDSK14, NeQuick G, BDSK8, GPSK8 in turn. In this paper, based on the observation information of GPS, GLONASS, BDS and Galileo, a multi-system ionospheric VTEC modeling study is carried out. The strategy can make full use of the characteristics of current multi-GNSS navigation to a certain extent. The precision of the ionospheric information fitting is better than that of the southern hemisphere in the high and middle latitudes of the northern hemisphere. Compared with the final GIM of CODE, the average deviation is about 1 TECU and the RMS is about 1.5 TECU. In both the southern and Northern hemispheres, the modelling results in the middle and high latitudes are better than those in the low latitudes. In the low latitudes of the northern hemisphere, the mean deviation is 2.77 TECU and the RMS is 3.92 TECU. In the low latitudes of the southern hemisphere, the mean deviation is 2.33 TECU and the RMS is 3.34 TECU.3. The ultimate, fast and predictive GIM accuracy of S and iGMAS provides a powerful guarantee for GNSS single-frequency users to conduct high-precision navigation and researchers to conduct precise research on ionospheric information. In the high latitude region, the final GIM precision of JPL is the best, and the fast GIM precision of STD is 1.76TECU.JPL is the best among all the fast GIMs. The STD in the high latitude, middle latitude and low latitude regions is 1.77 TECU, 1.91 TECU and 3.14 TECU respectively. In addition, the predicted GIM precision is lower than that of the final and fast GIM. 4. In this paper, the ARMA time series model is used to study the ionosphere. Modeling and forecasting of information provide GNSS users with high precision real-time ionospheric delay correction model, and this method also provides an effective and feasible way for the study of ionosphere. RMS is 3.53 TECU; with the decrease of latitude, the forecast precision decreases; in China, the forecast precision of 40 days is relatively stable, with an average RMS of 4.01 TECU; the forecast precision of daytime is better than that of night, and the difference is within 0.5 TECU.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P228.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉智敏;李洋洋;李斐;郭金運(yùn);張海平;湯玉兵;孔昭龍;;基于SDCORS的區(qū)域電離層模型研究[J];全球定位系統(tǒng);2016年06期
2 王寧波;袁運(yùn)斌;張寶成;李子申;;GPS民用廣播星歷中ISC參數(shù)精度分析及其對(duì)導(dǎo)航定位的影響[J];測(cè)繪學(xué)報(bào);2016年08期
3 安家春;寧新國(guó);王澤民;張辛;;利用球冠諧函數(shù)和時(shí)間序列分析預(yù)報(bào)南極地區(qū)電離層[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2015年05期
4 陳鵬;陳家君;;GPS/GLONASS融合的全球電離層格網(wǎng)模型結(jié)果分析[J];大地測(cè)量與地球動(dòng)力學(xué);2014年05期
5 陳鵬;陳家君;;全球電離層格網(wǎng)模型精度影響因素分析[J];大地測(cè)量與地球動(dòng)力學(xué);2014年02期
6 韓吉德;王祖順;王春青;;全球電離層時(shí)空變化特性分析[J];測(cè)繪地理信息;2012年06期
7 章紅平;韓文慧;黃玲;耿長(zhǎng)江;;地基GNSS全球電離層延遲建模[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2012年10期
8 楊哲;宋淑麗;薛軍琛;朱文耀;;Klobuchar模型和NeQuick模型在中國(guó)地區(qū)的精度評(píng)估[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2012年06期
9 周偉莉;李素華;蔣美霞;;基于球諧函數(shù)模型的電離層預(yù)報(bào)[J];測(cè)繪信息與工程;2012年03期
10 田亮;孫付平;李楚陽;;基于GPS測(cè)站坐標(biāo)殘差序列的ARMA建模方法研究[J];大地測(cè)量與地球動(dòng)力學(xué);2012年02期
相關(guān)會(huì)議論文 前1條
1 黃逸丹;王明遠(yuǎn);韓玲;章紅平;平勁松;;基于中國(guó)電離層資料對(duì)Klobuchar模型的改進(jìn)[A];中國(guó)空間科學(xué)學(xué)會(huì)空間探測(cè)專業(yè)委員會(huì)第十九次學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 耿長(zhǎng)江;利用地基GNSS數(shù)據(jù)實(shí)時(shí)監(jiān)測(cè)電離層延遲理論與方法研究[D];武漢大學(xué);2011年
2 章紅平;基于地基GPS的中國(guó)區(qū)域電離層監(jiān)測(cè)與延遲改正研究[D];中國(guó)科學(xué)院研究生院(上海天文臺(tái));2006年
相關(guān)碩士學(xué)位論文 前4條
1 程娜;GNSS廣播電離層精度監(jiān)測(cè)評(píng)估方法研究[D];長(zhǎng)安大學(xué);2015年
2 魏傳軍;基于地基GNSS觀測(cè)數(shù)據(jù)的電離層延遲改正研究[D];長(zhǎng)安大學(xué);2014年
3 張祿;基于時(shí)間序列、神經(jīng)網(wǎng)絡(luò)、灰色和組合預(yù)測(cè)對(duì)電離層TEC的預(yù)測(cè)研究[D];南京信息工程大學(xué);2012年
4 劉軍;電離層預(yù)報(bào)模型研究及震前電離層異常初探[D];解放軍信息工程大學(xué);2011年
,本文編號(hào):2235471
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2235471.html