基于對象的高分辨率遙感影像土地利用變化檢測技術(shù)研究
[Abstract]:With the rapid development of modern society and economy, the development of land resources is becoming faster and faster. The change of land use is characterized by small period of change, wide range and slow renewal. Remote sensing technology with fast data acquisition, wide coverage and low manual workload is the best method for change detection. On the one hand, the high resolution remote sensing image improves the precision of extracting remote sensing image information; on the other hand, the request of remote sensing image processing technology is also higher. It is very important to optimize the processing technology of high resolution remote sensing image for land use change detection. In this paper, the object oriented technology is used to detect land use change. Two major problems, how to choose the best segmentation scale in the process of object oriented image processing and how to use object features to realize classification, are studied in detail. First of all, this paper presents an evaluation index and a computational model of the optimal segmentation scale, and the validity of the evaluation index and the computational model is proved by experiments. The evaluation index includes the homogeneity index within the object and the heterogeneity index between the objects. The homogeneity index is calculated by using the standard deviation of the object, the area and the total number of partitioned objects, while the heterogeneity index is calculated by using the total variation of the neighborhood on the boundary of the object. The optimal partition scale model is a nonlinear regression model based on mathematical statistics to analyze the experimental data. Secondly, aiming at the classification problem after image segmentation, this paper designs the land type feature-rule base, and stores and manages the main object features and classification rules of land type effectively. Thus provides the dynamic classification rule link for the land classification. By combining the fuzzy logic classification method with the decision tree classification method, the classification rules can make clear fuzzy rules for the ground classification. The optimal selection of features is based on the information quantity and correlation of the feature set counted by the information theory method to select the feature set that contains the largest amount of information. Finally, the paper makes comprehensive use of the above methods to carry on the land use change detection experiment, for the typical land type, carries on the best partition scale calculation, the feature optimized combination and the classification rule formulation, and has established the characteristic rule base example. In this paper, the image data of different periods are segmented according to the best segmentation scale, the classification rules are classified, and the classification results are compared and analyzed. Finally, the change information of land use type is obtained. The experimental results show that the proposed method is effective and practical.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:F301;P237
【參考文獻】
相關期刊論文 前10條
1 張俊;朱國龍;李妍;;面向?qū)ο蟾叻直媛视跋裥畔⑻崛≈械某叨刃白顑?yōu)尺度研究[J];測繪科學;2011年02期
2 何敏;張文君;王衛(wèi)紅;;面向?qū)ο蟮淖顑?yōu)分割尺度計算模型[J];大地測量與地球動力學;2009年01期
3 劉小平,彭曉鵑,艾彬;像元信息分解和決策樹相結(jié)合的影像分類方法[J];地理與地理信息科學;2004年06期
4 劉雯;駱劍承;鐘秋海;沈占鋒;徐憲立;;基于特征基元的高分辨率遙感影像城市空間信息提取[J];地理與地理信息科學;2007年04期
5 劉峰;龔健雅;;一種基于多特征的高光譜遙感圖像分類方法[J];地理與地理信息科學;2009年03期
6 胡文亮;趙萍;董張玉;;一種改進的遙感影像面向?qū)ο笞顑?yōu)分割尺度計算模型[J];地理與地理信息科學;2010年06期
7 明冬萍;駱劍承;周成虎;王晶;;高分辨率遙感影像特征分割及算法評價分析[J];地球信息科學;2006年01期
8 侯偉;魯學軍;張春曉;王靜;;面向?qū)ο蟮母叻直媛视跋裥畔⑻崛》椒ㄑ芯俊运拇ɡ砜h居民地提取為例[J];地球信息科學學報;2010年01期
9 趙宇鸞;林愛文;;基于面向?qū)ο蠛投喑叨扔跋穹指罴夹g(shù)的城市用地分類研究——以武漢市城市中心區(qū)為例[J];國土資源科技管理;2008年05期
10 李雪;舒寧;劉小利;;基于序貫決策融合的變化檢測方法研究[J];長江科學院院報;2012年11期
相關博士學位論文 前8條
1 祝錦霞;高分辨率遙感影像變化檢測的關鍵技術(shù)研究[D];浙江大學;2011年
2 黃慧萍;面向?qū)ο笥跋穹治鲋械某叨葐栴}研究[D];中國科學院研究生院(遙感應用研究所);2003年
3 李向軍;遙感土地利用變化檢測方法探討[D];中國科學院研究生院(遙感應用研究所);2006年
4 劉華文;基于信息熵的特征選擇算法研究[D];吉林大學;2010年
5 吳劍;基于面向?qū)ο蠹夹g(shù)的遙感震害信息提取與評價方法研究[D];武漢大學;2010年
6 張漢松;基于對象的海岸帶地物變化遙感檢測技術(shù)的研究[D];浙江大學;2010年
7 高偉;基于特征知識庫的遙感信息提取技術(shù)研究[D];中國地質(zhì)大學;2010年
8 王琰;基于像斑統(tǒng)計分析的高分辨率遙感影像土地利用/覆蓋變化檢測方法研究[D];武漢大學;2012年
相關碩士學位論文 前2條
1 閆凱;人臉識別中基于TV模型的光照不變量提取[D];西安電子科技大學;2011年
2 吳秀蕓;基于高分辨率遙感影像的建筑物提取及輪廓矢量化研究[D];南京大學;2011年
,本文編號:2143900
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2143900.html