基于HBase的矢量空間數(shù)據(jù)存取關(guān)鍵技術(shù)研究
[Abstract]:With the development of information technology and spatial information acquisition technology, the development of global information technology and the wide application of GIS (Geographic Information system), spatial data is growing rapidly. In the face of the increasing amount of spatial data, the traditional spatial data management scheme faces the bottleneck of high concurrent reading and writing and expansibility. Cloud computing can meet the needs of massive data storage, big data parallel processing, high concurrent retrieval and so on. In view of the many advantages of cloud computing technology, this paper focuses on how to use cloud computing technology to access mass vector space data. This paper focuses on the research and design of vector spatial data storage model, spatial index construction, data organization scheme, data import, spatial query strategy and attribute SQL query on HBase. This paper focuses on the following aspects: (1) introduction to the research background of vector spatial data cloud storage and retrieval and analysis of related theory and technology. This paper describes the research background and significance of cloud access for massive spatial data storage, analyzes the general situation of cloud computing at home and abroad, the research status quo of cloud access of spatial data and the shortcomings of current research. Combined with the characteristics of Map Reduce parallel computing framework, the feasibility of vector spatial data parallel processing in Map Reduce is analyzed. The advantages of distributed database HBase and SQL On Hadoop related cloud computing technology in storing and managing massive vector spatial data are discussed. (2) the vector spatial data storage model based on HBase and the integration of No SQL model and relational model are constructed. Vector spatial data management scheme. According to the characteristics of vector spatial data, combined with the HBase data model, the vector spatial data storage model is designed, and the multilevel grid index is designed by using the quadtree hierarchical partition technology. Combined with the clustering characteristics of spatial information multilevel grid coding and Hilbert space filling curve, the vector spatial data identification coding is designed according to HBase database Row Key storage rules, according to HBase database storage rules and Phoenix operation structured data characteristics. This paper proposes and designs a vector spatial data management scheme which integrates No SQL model and relational model. (3) A vector spatial data storage strategy and a parallel spatial index strategy are designed. Combined with the characteristics of Map Reduce parallel processing, this paper discusses and designs the input scheme of single machine importing vector spatial data and Map Reduce parallel processing vector spatial data, and designs a parallel spatial index scheme based on Map Reduce. (4) according to the multi-level grid index strategy, we design a parallel spatial index scheme. Spatial query strategy is designed. According to the characteristics of different spatial query operators, multilevel grid index and HBase scanning query data, the optimization strategy of spatial query operator is designed and implemented. There are three spatial query optimization strategies: merging trellis coding optimizing query strategy and restricting scanning column cluster optimizing data filtering strategy. Finally, the prototype system of vector spatial data access based on HBase is designed and implemented. The grid index and multilevel grid index are implemented. The efficiency of spatial query between grid index and multilevel grid index is compared. The validity of multilevel grid index is verified. Based on the multilevel grid index, the effectiveness of three spatial query optimization strategies, namely spatial query operator optimization strategy, combined grid coding optimization query strategy and restricted scan column cluster optimization data filtering strategy, is verified.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P208
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳黎兵;邱鑫;葉璐瑤;王曉棟;聶雷;;基于Hadoop的SQL查詢引擎性能研究[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年02期
2 李德仁;;展望大數(shù)據(jù)時(shí)代的地球空間信息學(xué)[J];測(cè)繪學(xué)報(bào);2016年04期
3 張葉;許國(guó)艷;花青;;基于HBase的矢量空間數(shù)據(jù)存儲(chǔ)與訪問(wèn)優(yōu)化[J];計(jì)算機(jī)應(yīng)用;2015年11期
4 宋寶燕;王俊陸;王妍;;基于范德蒙碼的HDFS優(yōu)化存儲(chǔ)策略研究[J];計(jì)算機(jī)學(xué)報(bào);2015年09期
5 鄭坤;付艷麗;;基于HBase和GeoTools的矢量空間數(shù)據(jù)存儲(chǔ)模型研究[J];計(jì)算機(jī)應(yīng)用與軟件;2015年03期
6 李清泉;李德仁;;大數(shù)據(jù)GIS[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2014年06期
7 孟輝;朱美正;張鋒葉;;基于Hadoop的矢量空間數(shù)據(jù)庫(kù)技術(shù)[J];計(jì)算機(jī)與現(xiàn)代化;2014年02期
8 尹芳;馮敏;諸云強(qiáng);劉睿;;基于開源Hadoop的矢量空間數(shù)據(jù)分布式處理研究[J];計(jì)算機(jī)工程與應(yīng)用;2013年16期
9 陳崇成;林劍峰;吳小竹;巫建偉;連惠群;;基于NoSQL的海量空間數(shù)據(jù)云存儲(chǔ)與服務(wù)方法[J];地球信息科學(xué)學(xué)報(bào);2013年02期
10 林德根;梁勤歐;;云GIS的內(nèi)涵與研究進(jìn)展[J];地理科學(xué)進(jìn)展;2012年11期
相關(guān)博士學(xué)位論文 前1條
1 范建永;基于Hadoop的云GIS若干關(guān)鍵技術(shù)研究[D];解放軍信息工程大學(xué);2013年
相關(guān)碩士學(xué)位論文 前2條
1 祝若鑫;云計(jì)算環(huán)境下的空間矢量數(shù)據(jù)存儲(chǔ)與管理[D];解放軍信息工程大學(xué);2015年
2 丁琛;基于HBase的空間數(shù)據(jù)分布式存儲(chǔ)和并行查詢算法研究[D];南京師范大學(xué);2014年
,本文編號(hào):2139716
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2139716.html