基于云理論的遙感影像分類方法研究
[Abstract]:With the development of space science and technology, remote sensing technology has become a powerful technical means to study the Earth's space environment. In the research of remote sensing technology, whether remote sensing information extraction, dynamic change prediction, thematic map making and the establishment of high-resolution remote sensing database are inseparable from remote sensing image classification, it is a hot research content in remote sensing technology. Although there are many remote sensing image classification algorithms, they can not solve the fuzzy uncertainty and random uncertainty in remote sensing image classification. Cloud theory can combine the fuzziness and randomness of various concepts together and solve the two kinds of uncertainty problems in classification. Therefore, this paper introduces cloud theory into remote sensing image classification. The main contents of this paper are as follows: 01 the definition of cloud, the three numerical features of cloud, the basic cloud model, cloud generator and virtual cloud theory are deeply studied. The advantages of cloud theory in solving the problem of fuzzy uncertainty and random uncertainty in classification are analyzed. 02 according to the difference of cloud model, three methods of remote sensing image classification based on cloud theory are proposed. That is, the classification method of remote sensing image based on improved normal cloud, The classification method of remote sensing image based on floating cloud and the classification method of remote sensing image based on comment cloud and virtual cloud. Compared with the traditional ISODATA clustering method, the maximum likelihood classification method and the fuzzy classification method, the classification results show that the remote sensing image classification method based on cloud theory has the advantages of high classification accuracy and simple calculation process.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:P237
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙泉華;宋偉東;;GIS產(chǎn)品質(zhì)量的熵權(quán)多層次模糊綜合評價(jià)[J];測繪科學(xué);2009年02期
2 趙泉華;宋偉東;孫國華;;基于梯形評語云及虛擬云理論的DLG質(zhì)量評價(jià)方法研究[J];測繪科學(xué);2011年03期
3 李剛;萬幼川;;基于高維云模型和RBF神經(jīng)網(wǎng)絡(luò)的遙感影像不確定性分類方法[J];測繪科學(xué);2012年01期
4 李萬臣;郭逢麗;劉海亮;;基于云模型的高光譜遙感圖像的分類研究[J];儀器儀表用戶;2011年01期
5 賈坤;李強(qiáng)子;田亦陳;吳炳方;;遙感影像分類方法研究進(jìn)展[J];光譜學(xué)與光譜分析;2011年10期
6 周旭;白深模;;基于灰度共生矩陣的遙感圖像紋理庫設(shè)計(jì)[J];海洋測繪;2010年05期
7 李德毅,孟海軍,史雪梅;隸屬云和隸屬云發(fā)生器[J];計(jì)算機(jī)研究與發(fā)展;1995年06期
8 許凱;秦昆;裴韜;;一種交互式的云模型圖像分割方法[J];計(jì)算機(jī)工程與應(yīng)用;2006年34期
9 唐銀鳳;黃志明;黃榮娟;姜佳欣;盧昕;;基于多特征提取和SVM分類器的紋理圖像分類[J];計(jì)算機(jī)應(yīng)用與軟件;2011年06期
10 謝道文;施式亮;;基于云模型的煤炭企業(yè)物資供應(yīng)商綜合評價(jià)[J];計(jì)算機(jī)工程與應(yīng)用;2013年06期
本文編號:2136517
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2136517.html