天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 測繪論文 >

利用GNSS獲取動態(tài)可降水量的理論與方法研究

發(fā)布時間:2018-06-21 06:14

  本文選題:天頂總延遲 + 可降水量 ; 參考:《西南交通大學》2014年博士論文


【摘要】:目前GNSS水汽反演的研究方向主要集中于靜態(tài)分段估計對流層,然后根據(jù)所得對流層轉(zhuǎn)化為可降水量,并將其應用于降雨等氣象方面的分析。由于天氣每時每刻存在變化,靜態(tài)分段估計可能不足以滿足實時可降水量監(jiān)測的要求,故本文主要針對如何提高動態(tài)對流層的估計精度進行了深入的研究,研究工作主要包括以下幾個方面:首先研究了提高差分GPS近實時獲取動態(tài)可降水量精度的方法。差分GPS解算對流層的過程中僅需要采用預報軌道就可以獲取實時對流層,進而轉(zhuǎn)換為實時可降水量。為提高解算精度,我們對基站和流動站(靜止臺站)給予以較高精度的先驗坐標,并對該坐標進行1 cm左右的精度約束。利用PBO觀測網(wǎng)絡中的17個測站采用上述方法計算表明:如果基站與流動站的測站高差較小,可以獲取2 mm精度的實時可降水量,可以滿足氣象預報的要求;反之則獲取的實時可降水量精度較差,這是由于測站上空對流層的差值與測站的高差強相關。針對傳統(tǒng)PPP分析了兩種改進的PPP獲取動態(tài)對流層延遲的精度。由于差分GNSS獲取對流層的精度受到測站高差的約束,PPP的出現(xiàn)則克服了這個問題,同時擺脫了差分GNSS需要多臺接收機同時觀測的負擔。由于觀測量沒有經(jīng)過差分,傳統(tǒng)PPP中的模糊度為浮點解,因此我們嘗試固定模糊度,結果表明該方法給對流層帶來1-2mm的影響,而且可以加速待估參數(shù)的收斂速度;此外,我們還嘗試利用GPS與GLONASS組合PPP技術解算對流層,結果顯示雙星座解算對流層與單星座解算對流層在局部差值可達幾厘米,顯然在觀測質(zhì)量不佳時多星座可以增加解算對流層的可靠性;趥鹘y(tǒng)PPP提出了顧及內(nèi)部和外部誤差源對對流層解算影響的理論模型。分析了高階電離層誤差、衛(wèi)星鐘差和接收機鐘差對對流層參數(shù)估計精度的影響,結果表明電離層非活躍期低緯度地區(qū)二階電離層對對流層估計的影響可達2 mm,三階電離層的影響不超過0.5mm;單一觀測量發(fā)生鐘跳可能會導致對流層在局部發(fā)生幾厘米的跳變,針對這一現(xiàn)象本文給出了鐘跳探測的方法,可應用于高精度實時對流層的解算;實時衛(wèi)星鐘差與最終衛(wèi)星鐘差差別可達數(shù)百米,故需要合理設置接收機鐘差的過程噪聲。采用動態(tài)PPP技術,首次分析了基于海、陸、空載體的移動GNSS水汽獲取精度。研究表明利用船載、車載和機載GNSS的數(shù)據(jù)可以獲取中誤差約為lcm左右的動態(tài)對流層延遲,轉(zhuǎn)換為動態(tài)可降水量的精度在2-3 mm左右。提出了附加約束條件的PPP算法。傳統(tǒng)的動態(tài)PPP精度通常在分米級,為提高動態(tài)PPP精度,可以利用生產(chǎn)實踐中存在的已知信息,這些信息包括內(nèi)部解算參數(shù)之間的聯(lián)系和外部的已知數(shù)據(jù);谶@些已知信息本文提出了附加約束條件的PPP算法,通過實驗數(shù)據(jù)分析表明該算法在一定的條件下可以提高參數(shù)的收斂速度,大大提高PPP的定位精度,同時也極大改善了對流層參數(shù)估計的精度。最終研究了基于PPP技術的實時動態(tài)可降水量獲取方法,分析了利用GNSS對暴雨進行預警的可行性。利用預報軌道與實時衛(wèi)星鐘差對2014年3月底香港地區(qū)的12個CORS站的對流層進行了計算和分析,研究結果顯示GPS測定的暴雨警告與香港天文臺發(fā)布的警告高度吻合。
[Abstract]:At present, the research direction of GNSS water vapor inversion is mainly focused on static sectional estimation of troposphere, and then based on the conversion of the troposphere to precipitable water and applying it to the meteorological aspects of rainfall. Because of the change in the weather every moment, the static sectional estimation may not meet the requirements of real-time precipitation monitoring. This paper mainly focuses on how to improve the estimation accuracy of dynamic troposphere. The research work mainly includes the following aspects: first, the method of improving the precision of dynamic precipitable water in the near real time of differential GPS is studied. In the process of calculating the troposphere, the real time troposphere can be obtained only by using the forecast orbit in the process of the differential GPS solution. In order to improve the real-time precipitable water, we give higher precision prior coordinates to the base station and the mobile station (stationary station) and carry out the precision constraints of about 1 cm of the coordinate. 17 stations in the PBO observation network are used to calculate the above methods: if the height difference between the base station and the station is smaller, The real-time precipitable water of 2 mm precision can be obtained to meet the requirements of the weather forecast. On the other hand, the accuracy of the real-time precipitable water is poor, because the difference between the troposphere over the station and the height difference of the station is strong. For the traditional PPP analysis, the precision of the dynamic tropospheric delay obtained by the two improved PPP is analyzed. The difference GNSS is obtained. The accuracy of the troposphere is constrained by the height of the station. The emergence of the PPP overcomes this problem and gets rid of the burden that the differential GNSS needs to observe at the same time. Since the observational measurement does not pass the difference, the fuzzy degree in the traditional PPP is floating point solution, so we try to fix the fuzziness, and the result shows that the method brings 1 to the troposphere. The effect of -2mm can also accelerate the convergence rate of the parameters to be estimated. In addition, we also try to solve the troposphere using the combination of GPS and GLONASS, and the results show that the local difference can reach several centimeters in the troposphere and the single constellation solution troposphere. It is obvious that the multi constellation can increase the solution troposphere when the observed mass is poor. Reliability. Based on the traditional PPP, a theoretical model considering the influence of the internal and external error sources on the troposphere is proposed. The influence of high order ionospheric error, satellite clock difference and receiver clock difference on the estimation accuracy of troposphere parameters is analyzed. The results show that the influence of the two order ionosphere on the troposphere estimation in the ionosphere inactive phase of the low latitude area can be found. Up to 2 mm, the influence of the three step ionosphere is not more than 0.5mm; the occurrence of the clock jump in a single measurement may cause the troposphere to occur in a few centimeters of the troposphere. In this paper, a method of detecting the clock jump is given, which can be applied to the calculation of high precision real-time troposphere, and the difference of the clock difference between the real time satellite and the final satellite clock can reach hundreds of meters. It is necessary to reasonably set the process noise of the receiver clock difference. Using the dynamic PPP technology, the accuracy of the moving GNSS water vapor acquisition based on the sea, land and air carrier is analyzed for the first time. The study shows that the data from the ship load, the vehicle and airborne GNSS can obtain the dynamic opposite flow layer delay of about LCM, and the accuracy of the conversion to the dynamic precipitable water is in 2- About 3 mm. A PPP algorithm with additional constraints is proposed. The traditional dynamic PPP precision is usually at the decimeter level to improve the dynamic PPP accuracy. The known information in the production practice can be used. These information includes the connections between the internal calculation parameters and the external known data. Based on these known information, the additional constraint bars are proposed. The PPP algorithm of the part shows that the algorithm can improve the convergence speed of the parameters under certain conditions, greatly improve the positioning accuracy of PPP, and greatly improve the accuracy of the estimation of the troposphere parameters. Finally, the real-time dynamic water reduction method based on PPP technology is studied. The application of GNSS to the rainstorm is analyzed. The feasibility of the early warning is made. The troposphere of 12 CORS stations in Hongkong area at the end of March 2014 is calculated and analyzed using the forecast orbit and the real-time satellite clock difference. The results show that the rainstorm warning measured by GPS is in accordance with the warning height issued by the Hongkong observatory.
【學位授予單位】:西南交通大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:P228.4;P412.2

【參考文獻】

中國期刊全文數(shù)據(jù)庫 前10條

1 周命端;郭際明;鄭勇波;許承權;;衛(wèi)星天線相位中心偏移對GPS精密單點定位精度的影響研究[J];測繪通報;2008年10期

2 蔣虎;空基GPS遙感地球大氣參數(shù)方法研究[J];測繪學報;2001年03期

3 陳俊勇;地基GPS遙感大氣水汽含量的誤差分析[J];測繪學報;1998年02期

4 許承權;范千;杜剛;;GPS天線相位轉(zhuǎn)繞誤差及其對GPS精密單點定位的精度影響分析[J];測繪與空間地理信息;2011年05期

5 宋淑麗,朱文耀,丁金才,廖新浩,程宗頤,葉其欣;上海GPS綜合應用網(wǎng)對可降水汽量的實時監(jiān)測及其改進數(shù)值預報初始場的試驗[J];地球物理學報;2004年04期

6 程曉,徐冠華,周春霞,王清華,鄂棟臣;應用GPS資料反演南極大氣可降水量的試驗分析[J];極地研究;2002年02期

7 李薇;袁運斌;歐吉坤;李慧;李子申;;全球?qū)α鲗犹祉斞舆t模型IGGtrop的建立與分析[J];科學通報;2012年15期

8 楚艷麗;郭英華;張朝林;王迎春;;地基GPS水汽資料在北京“7·10”暴雨過程研究中的應用[J];氣象;2007年12期

9 嚴豪健,張貴霞,郭鵬,劉敏,洪振杰;CHAMP觀測資料的振幅反演初步結果[J];天文學報;2005年01期

10 劉敏;郭鵬;葉其欣;張潔;朱雪松;;上海地區(qū)地基GPS水汽三維層析技術和初步應用[J];天文學報;2010年03期

中國重要會議論文全文數(shù)據(jù)庫 前1條

1 章紅平;呂海霞;李敏;施闖;;電離層延遲二階項改正模型化及其對精密定位影響[A];第二屆中國衛(wèi)星導航學術年會電子文集[C];2011年

,

本文編號:2047548

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2047548.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶43cca***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
欧美亚洲美女资源国产| 91久久精品国产一区蜜臀| 久久热这里只有精品视频| 一区二区三区在线不卡免费| 99久久精品午夜一区| 亚洲一级在线免费观看| 中文字幕乱码亚洲三区| 亚洲中文在线观看小视频| 免费在线播放不卡视频| 午夜国产精品国自产拍av| 久久精品国产亚洲av麻豆| 91免费精品国自产拍偷拍| 国产精品福利一二三区| 精品欧美日韩一二三区| 欧美国产日产综合精品| 爱在午夜降临前在线观看| 婷婷色香五月综合激激情| 日本午夜精品视频在线观看| 黄片免费播放一区二区| 五月综合激情婷婷丁香| 欧美日韩一级黄片免费观看| 国产av精品高清一区二区三区| 一级片黄色一区二区三区| 亚洲一区二区精品久久av | 人妻人妻人人妻人人澡| 国产麻豆视频一二三区| 久久99精品国产麻豆婷婷洗澡 | 欧美乱视频一区二区三区| 免费在线播放不卡视频| 免费大片黄在线观看日本| 九九视频通过这里有精品| 亚洲欧美日韩在线看片| 欧美一区二区三区性视频| 好吊一区二区三区在线看| 欧美日韩免费黄片观看| 97人妻精品免费一区二区| 亚洲中文字幕熟女丝袜久久| 精品日韩欧美一区久久| 国产一区在线免费国产一区| 国产精品亚洲二区三区| 中国美女草逼一级黄片视频|