非量測相機(jī)標(biāo)定的室外控制場設(shè)計與建立
本文選題:攝影測量 + 相機(jī)標(biāo)定; 參考:《吉林大學(xué)》2017年碩士論文
【摘要】:近景攝影測量,是針對實物及其運(yùn)動狀態(tài)的近距離攝影測量,目前,近景攝影測量幾乎應(yīng)用于社會生活的各個領(lǐng)域。在近景攝影測量作業(yè)過程中,首先,需要對物體進(jìn)行攝影,其次,對所攝像片進(jìn)行再處理以獲取物體靜態(tài)及動態(tài)信息。在攝影過程中,主要有量測型和非量測型攝影設(shè)備。近年來,隨著近景攝影測量技術(shù)的快速發(fā)展,用非量測型相機(jī)特別是普通數(shù)碼相機(jī)進(jìn)行影像獲取逐漸成為一種趨勢,但是,非量測型相機(jī)不是專門為攝影測量目的設(shè)計的,它存在結(jié)構(gòu)不穩(wěn),內(nèi)方位元素未知,畸變差較大等缺陷,因此,在使用時必須對其進(jìn)行相機(jī)標(biāo)定,而高精度的三維控制場是相機(jī)標(biāo)定時的一種可靠參照對象,通過對控制場的測量,可以獲取高精度的標(biāo)志點坐標(biāo),為相機(jī)標(biāo)定提供基礎(chǔ)數(shù)據(jù)。本文以國家自然科學(xué)基金面上項目“基于DCRP的巖體復(fù)雜結(jié)構(gòu)與質(zhì)量表征參數(shù)精細(xì)描述”(41472243)為支持,結(jié)合國內(nèi)外關(guān)于三維控制場建立的研究現(xiàn)狀,設(shè)計和建立了用于非量測相機(jī)標(biāo)定的室外三維控制場。研究主要包括控制場標(biāo)志及點位分布設(shè)計,基于免棱鏡全站儀極坐標(biāo)法的控制場測量,控制場測量的數(shù)據(jù)預(yù)處理,基于軸對準(zhǔn)法的控制場坐標(biāo)系的建立,基于誤差理論的控制場測量精度評定及影響因素分析。論文取得了如下研究成果:(1)室外三維控制場的設(shè)計。對控制場標(biāo)志的尺寸、形狀、顏色和材料進(jìn)行了設(shè)計;研究和確定了控制場點位的分布,在兩棟公寓樓的12個不同的立面上共布設(shè)了258個標(biāo)志點。(2)基于免棱鏡全站儀空間極坐標(biāo)法的控制場測量及數(shù)據(jù)預(yù)處理。采用全站儀Leica TS30基于空間極坐標(biāo)法對控制場標(biāo)志點進(jìn)行測量;根據(jù)測量限差,結(jié)合觀測量信息對標(biāo)志點的初始坐標(biāo)進(jìn)行修正。(3)基于軸對準(zhǔn)法的控制場坐標(biāo)系建立及坐標(biāo)轉(zhuǎn)換。為實現(xiàn)各立面上標(biāo)志點的坐標(biāo)統(tǒng)一和評定標(biāo)志點測量的實際精度,基于軸對準(zhǔn)法建立了穩(wěn)定的控制場坐標(biāo)系,并將測量坐標(biāo)系下的坐標(biāo)轉(zhuǎn)換到控制場坐標(biāo)系下,以便不同次測量的坐標(biāo)對比分析,總結(jié)出坐標(biāo)轉(zhuǎn)換點的選取原則。(4)基于誤差理論的精度評定和影響因素分析;谡`差理論對控制場測量成果進(jìn)行精度評定,得到控制場點位測量的理論精度為±2mm,實際精度為±1.4mm;分析了不同坐標(biāo)轉(zhuǎn)換點以及觀測條件如視線仰角(α),視線與標(biāo)志法線夾角(β),斜距(S)等因素對于點位精度的影響,得出在室外控制場測量工作中,應(yīng)盡量控制α小于20°,β小于50°,S小于50m,以獲得較高的控制場測量精度。為實現(xiàn)非量測相機(jī)的標(biāo)定,本文設(shè)計和建立了高精度的室外三維控制場,提供了控制場建立過程中的點位設(shè)計方案、測量技術(shù)要求與數(shù)據(jù)處理方法,進(jìn)一步補(bǔ)充了室外控制場建立理論,研究成果具有理論和工程實踐意義。
[Abstract]:Close-range photogrammetry is a kind of close-range photogrammetry aimed at the object and its moving state. At present, close-range photogrammetry is applied in almost every field of social life. In the process of close-range photogrammetry, first of all, the object needs to be photographed, and secondly, the image is reprocessed to obtain the static and dynamic information of the object. In the process of photography, there are mainly measuring and non-measuring photography equipment. In recent years, with the rapid development of close-range photogrammetry technology, it has become a trend to obtain images by using non-measuring cameras, especially ordinary digital cameras. However, non-measurement cameras are not designed specifically for photogrammetry purposes. It has some defects, such as unstable structure, unknown internal azimuth elements, large distortion difference and so on. Therefore, the camera must be calibrated when it is used, and the high precision 3D control field is a reliable reference object for camera calibration. Through the measurement of the control field, the high precision coordinate of the mark point can be obtained, and the basic data can be provided for the camera calibration. This paper is supported by the project of National Natural Science Foundation of China, "precise description of complex structure and quality characterization parameters of rock mass based on DCRP", and combined with the research status quo of the establishment of three-dimensional control field at home and abroad. An outdoor three-dimensional control field for non-measurement camera calibration is designed and established. The research mainly includes the design of control field mark and point distribution, the control field measurement based on Polar coordinate method of prism free total station, the data preprocessing of control field measurement, and the establishment of control field coordinate system based on axial alignment method. The accuracy evaluation of control field based on error theory and the analysis of influencing factors are presented. In this paper, the following research results are obtained: 1) the design of outdoor three-dimensional control field. The dimensions, shapes, colors and materials of the control field signs are designed, and the distribution of control field points is studied and determined. A total of 258 mark points are arranged on 12 different facades of two apartment buildings. The control field measurement and data preprocessing based on the prism free total station spatial polar coordinate method are presented. The total station Leica TS30 is used to measure the control field mark point based on the spatial polar coordinate method, and the initial coordinate of the mark point is modified according to the measurement limit and the observation information. The control field coordinate system is established and transformed based on the axial alignment method. In order to realize the coordinate unification of the mark points on each elevation and evaluate the actual accuracy of the mark point measurement, a stable control field coordinate system is established based on the axial alignment method, and the coordinate under the measurement coordinate system is converted to the control field coordinate system. In order to compare and analyze the coordinate of different times, the principle of selecting coordinate transformation point is summarized. (4) the accuracy evaluation based on error theory and the analysis of influencing factors are given. Based on error theory, the accuracy of control field measurement is evaluated. The theoretical accuracy of the control field is 鹵2 mm and the actual accuracy is 鹵1.4 mm. The effects of different coordinate conversion points and observation conditions such as elevation of line of sight (偽), angle of line of sight and normal line of sight (尾), slanting distance S (S) on the accuracy of point position are analyzed. It is concluded that in outdoor control field measurement, 偽 < 20 擄, 尾 < 50 擄S < 50 m should be controlled as far as possible in order to obtain higher precision of control field measurement. In order to realize the calibration of the non-measuring camera, a high precision outdoor 3D control field is designed and established in this paper. The design scheme of the point position, the technical requirements and the data processing method of the control field are provided. The theory of outdoor control field is further supplemented, and the research results are of theoretical and engineering significance.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊姍姍;吳亮;王樂;;數(shù)碼相機(jī)標(biāo)定過程中控制場的建立[J];山西建筑;2015年08期
2 魏林金;趙青芬;;一種快速建立高精密三維控制場的方法[J];江西測繪;2014年04期
3 王鳳艷;韓東亮;張元元;牛雪峰;楊學(xué)剛;;基于軸對準(zhǔn)法的坐標(biāo)系生成與轉(zhuǎn)換[J];測繪通報;2013年07期
4 王鳳艷;黃潤秋;陳劍平;楊國東;牛雪峰;韓東亮;馬麗霞;;基于免棱鏡全站儀的巖體邊坡控制測量及結(jié)構(gòu)面產(chǎn)狀檢驗測量[J];吉林大學(xué)學(xué)報(工學(xué)版);2013年06期
5 秦世偉;谷川;潘國榮;;任意旋轉(zhuǎn)角坐標(biāo)轉(zhuǎn)換的簡便模型[J];工程勘察;2009年06期
6 楊軍;;非量測數(shù)碼相機(jī)檢校方法的研究[J];測繪科學(xué);2009年S1期
7 余加勇;鄒崢嶸;朱建軍;;計算機(jī)視覺測量準(zhǔn)二維控制場建設(shè)[J];測繪科學(xué);2008年04期
8 袁孝;佟書泉;李欣;;室內(nèi)三維控制場測量方法研究[J];四川測繪;2007年06期
9 侯文廣;商浩亮;馮文灝;;二維控制場建立中的關(guān)鍵技術(shù)研究[J];測繪科學(xué);2006年02期
10 楊凱;國際攝影測量與遙感學(xué)會(ISPRS)第二十屆大會情況[J];測繪工程;2005年01期
相關(guān)博士學(xué)位論文 前3條
1 黃桂平;數(shù)字近景工業(yè)攝影測量關(guān)鍵技術(shù)研究與應(yīng)用[D];天津大學(xué);2005年
2 詹總謙;基于純平液晶顯示器的相機(jī)標(biāo)定方法與應(yīng)用研究[D];武漢大學(xué);2006年
3 劉子俠;基于數(shù)字近景攝影測量的巖體結(jié)構(gòu)面信息快速采集的研究應(yīng)用[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前5條
1 韓東亮;數(shù)字近景攝影測量獲取巖體結(jié)構(gòu)面幾何信息的方法研究[D];吉林大學(xué);2014年
2 杜小宇;數(shù)字近景攝影測量系統(tǒng)精度分析和控制[D];南京航空航天大學(xué);2008年
3 田愛軍;隧道斷面數(shù)字近景攝影測量系統(tǒng)研究開發(fā)[D];北京交通大學(xué);2007年
4 王保豐;計算機(jī)視覺工業(yè)測量系統(tǒng)的建立與標(biāo)定[D];解放軍信息工程大學(xué);2004年
5 王森虎;基于近景攝影測量的三維模型可視化系統(tǒng)研制[D];西安科技大學(xué);2003年
,本文編號:2028467
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2028467.html