潮間帶地形遙感動態(tài)監(jiān)測體系研究
本文選題:潮間帶 + 遙感監(jiān)測方法。 參考:《南京師范大學》2013年博士論文
【摘要】:潮間帶處于海陸交界,是研究現代海岸動態(tài)和環(huán)境變遷的參照物,同時也是開發(fā)利用海洋資源的主要地帶。潮間帶除受海陸雙重動力影響外,受人類活動的影響也越來越多,地形復雜的潮間帶變化更為頻繁。在此情況下,對潮間帶地形進行動態(tài)監(jiān)測、及時掌握潮間帶地形的變化情況非常重要。 傳統(tǒng)地形測量方法周期長、范圍小、消耗大且獲取的地形資料有限,無法滿足潮間帶地形動態(tài)監(jiān)測需求;而遙感監(jiān)測方法具有快速大面積同步監(jiān)測的特點,能夠提供較長時間跨度和短時間周期的地形變化。遙感技術已被廣泛用于潮間帶地形動態(tài)監(jiān)測研究并成為主要的動態(tài)監(jiān)測手段,但是目前多局限于對某個遙感監(jiān)測方法的研究。 潮間帶地形變化有潮流作用帶來的長期變化,也有開發(fā)利用帶來的中期變化,更有突發(fā)氣象事件如風暴潮等帶來的短時變化;對潮間帶地形的動態(tài)監(jiān)測有大空間尺度的監(jiān)測如對輻射沙脊群的動態(tài)變化監(jiān)測,有中尺度空間的監(jiān)測如對港口航道附近地形變化的監(jiān)測,也有小尺度微地貌的監(jiān)測如對最小地貌單元納潮盆地的動態(tài)監(jiān)測。單一的遙感監(jiān)測方法無法獲取這些不同尺度的地形變化,也無法得到完整和全面的動態(tài)變化信息。 本文提出建立潮間帶地形遙感動態(tài)監(jiān)測體系來解決這一問題,即通過分析不同監(jiān)測方法的特點,借助系統(tǒng)科學理論,建立潮間帶地形遙感動態(tài)監(jiān)測體系,從多維度、多視角監(jiān)測潮灘,以期獲得潮間帶地形的動態(tài)變化情況,掌握潮間帶的地形演變規(guī)律,為潮間帶開發(fā)利用提供實時的地形數據,提供宏觀和微觀不同比例的監(jiān)測,在港口航道水下地形監(jiān)測、灘涂圍墾工程監(jiān)測和生態(tài)環(huán)境保護中提供數據支持和技術支持,為主管部門進行分析、做出決策提供重要的依據。 本文根據潮間帶的特點,研究不同的遙感監(jiān)測方法和方法組合,并針對遙感監(jiān)測方法評價建立子體系,從而建立適合潮間帶地形的遙感動態(tài)監(jiān)測體系,達到對潮間帶地形的全面動態(tài)監(jiān)測。 研究結論如下: ①潮間帶地形遙感動態(tài)監(jiān)測體系的主要要素為監(jiān)測對象、監(jiān)測方法、監(jiān)測結果和評價子體系,體系研究過程為:監(jiān)測對象分析、監(jiān)測方法分析、監(jiān)測體系技術研究和評價子體系研究。 ②從地貌特點、空間尺度和時間尺度三個方面進行了適用對象分析,從數據源、技術成熟度和監(jiān)測結果處理程序三個角度總結了各遙感監(jiān)測方法的使用成本。結果表明:可見光水深法適合大范圍水下地形的長期動態(tài)監(jiān)測,含水量法適合小范圍出露潮灘的短期動態(tài)監(jiān)測,沙脊特征線法適合中范圍沙脊的各時間尺度動態(tài)監(jiān)測,潮汐水道中軸線法適合中范圍潮汐水道各時間尺度動態(tài)監(jiān)測,納潮盆法適合小范圍出露潮灘短期動態(tài)監(jiān)測;納潮盆法使用成本較高,可見光水深法和含水量法使用成本中等,沙脊特征線法和潮汐水道中軸線法使用成本較低。 ③提出用方法組合來彌補單一方法的局限,獲得更全面和更詳細的監(jiān)測結果。方法組合有互補型組合和優(yōu)化型組合兩種;パa型方法組合有:可見光水深法和含水量法組合,沙脊特征線法和潮汐水道中軸線法組合;優(yōu)化型方法組合有:含水量法和納潮盆地法組合,含水量法和沙脊特征線法組合,可見光水深法和潮汐水道中軸線法組合 ④建立了潮間帶地形遙感動態(tài)監(jiān)測體系的評價子體系,對整個體系進行質量控制和精度評價,內容包括:增補了遙感類技術規(guī)范,補充了遙感監(jiān)測方法的技術依據;提出自然因子和經濟因子兩個評價指標用來對遙感監(jiān)測方法選擇進行評價,確保監(jiān)測方法選擇的合理;針對不同的遙感監(jiān)測方法,提出不同的精度評價指標控制遙感監(jiān)測方法的應用質量,也給出了各方法的精度范圍;從監(jiān)測對象地貌特征出發(fā),提出了適用的動態(tài)監(jiān)測指標,從三維和二維的角度對地形變化進行分析。 ⑤對潮間帶地形遙感動態(tài)監(jiān)測體系進行了應用分析,提出了可以提高精度和控制經濟成本的遙感影像的選擇方法,即綜合考慮影像的空間分辨率和光譜分辨率;提出了適合潮間帶這一特殊地貌的遙感影像預處理方法,包括FLAASH輻射校正方法和LGCP法幾何校正。 ⑥在監(jiān)測具體的某一潮間帶時,對于近岸淺海地形,運用可見光水深法和含水量法的方法組合;對于近岸灘涂,運用含水量法和納潮盆法的方法組合;對于沙脊群,運用沙脊特征線法和潮汐水道中軸線法。并選擇南黃海輻射沙脊群為監(jiān)測對象進行具體的案例分析,流程為監(jiān)測對象分析、監(jiān)測方法選擇與執(zhí)行、精度評價、最后得到監(jiān)測結果,系統(tǒng)地完成了體系應用,證實了該體系具有較強的實際操作性和較廣的應用范圍。
[Abstract]:The intertidal zone is on the boundary between sea and land. It is a reference for the study of the dynamic and environmental changes of the modern coast. It is also the main zone for the development and utilization of marine resources. The intertidal zone is influenced more and more by human activities besides the dual power of sea and land, and the complex topography of the intertidal zone becomes more frequent. It is very important to monitor the movement state and grasp the changes of the topography in the intertidal zone in time.
The traditional topographic survey method has long period, small range, large consumption and limited terrain data, which can not meet the requirement of dynamic monitoring of intertidal terrain, and remote sensing monitoring method has the characteristics of rapid and large area synchronous monitoring, which can provide long time span and short time period of terrain change. Remote sensing technology has been widely used in intertidal zone. The study of topographic dynamic monitoring has become the main means of dynamic monitoring, but at present it is mostly limited to the study of a remote sensing monitoring method.
The change of tidal zone topography has the long-term changes brought by the tidal current, and also has the medium-term changes brought by the development and utilization, and the short-term changes caused by the sudden weather events, such as the storm tide, and the monitoring of the dynamic monitoring of the intertidal terrain, such as the monitoring of the dynamic changes of the radiation sand ridges, has the monitoring of the mesoscale space. The monitoring of topographic changes near the port channel also has the monitoring of small scale micro geomorphology, such as the dynamic monitoring of the tidal basin of the smallest geomorphic unit. The single remote sensing method can not obtain the topographic changes of these different scales, and the complete and comprehensive dynamic change information can not be obtained.
In this paper, a dynamic monitoring system for intertidal terrain remote sensing is proposed to solve this problem. By analyzing the characteristics of different monitoring methods and using the theory of system science, the dynamic monitoring system of intertidal terrain remote sensing is established, and the tidal flat is monitored from multi dimension and multi angle, so as to obtain the dynamic changes of the intertidal terrain and master the intertidal zone. The shape evolution law provides real-time terrain data for the development and utilization of intertidal zone, provides macro and micro scale monitoring, and provides data support and technical support in the underwater terrain monitoring of the port channel, the monitoring of tidal flat reclamation project and the ecological environment protection, which provides important basis for the competent department to analyze and make the decision.
According to the characteristics of intertidal zone, this paper studies different methods and combination of remote sensing monitoring methods and methods, and establishes a sub system for remote sensing monitoring methods, thus establishing a dynamic remote sensing monitoring system suitable for intertidal terrain to achieve a comprehensive dynamic monitoring of the intertidal terrain.
The conclusions are as follows:
(1) the main elements of the dynamic monitoring system of the intertidal terrain remote sensing are monitoring objects, monitoring methods, monitoring results and evaluation subsystems. The research process of the system is the analysis of monitoring objects, the analysis of monitoring methods, the research of monitoring system technology and the research of evaluation subsystem.
The applicable object analysis was carried out from three aspects of geomorphology, spatial scale and time scale. The use cost of various remote sensing monitoring methods was summarized from three aspects of data sources, technical maturity and monitoring result processing program. The results showed that the visible light water depth method was suitable for the long-term dynamic monitoring of the large range underwater terrain, and the water content method was suitable. The short term dynamic monitoring of the small range outcropping tidal flat is suitable for dynamic monitoring of the time scales of the medium range sand ridges. The axis method of the tidal channel is suitable for dynamic monitoring of the time scales of the mid range tidal waterways, and the tidal basin method is suitable for the short term dynamic monitoring of the small outcropping tidal flats; the tidal basin method uses higher cost and visible light water depth. The cost of the method and the water content method is moderate, and the sand ridge characteristic line method and the tidal water line axis method are of low cost.
(3) the combination of methods to make up the limitation of the single method and obtain more comprehensive and more detailed monitoring results. The combination of the method combination has two kinds of complementary combination and optimal combination. The combination of the complementary method includes: the visible light water depth method and the water content method combination, the sand ridge characteristic line method and the tidal water channel axis method combination; the optimization method combination has The combination of water content method and Nadu basin method, water content method and sand ridge characteristic line method, visible light water depth method and tidal water line axis combination method.
The evaluation subsystem of the dynamic monitoring system of the intertidal terrain remote sensing is established, and the quality control and accuracy evaluation of the whole system are carried out. The contents include: adding the remote sensing technical specification and supplementing the technical basis of the remote sensing monitoring method; two evaluation indexes of natural and economic factors are put forward to select the remote sensing monitoring methods. According to the different remote sensing methods, different precision evaluation indexes are put forward to control the application quality of remote sensing monitoring methods, and the precision range of each method is also given. From the geomorphic features of the monitoring objects, the applicable dynamic monitoring indexes are put forward, and the terrain from the three-dimensional and two-dimensional angles is made to the terrain. The change is analyzed.
The application of remote sensing dynamic monitoring system for intertidal terrain is analyzed. The selection method of remote sensing image, which can improve the precision and control the economic cost, is put forward, that is to consider the spatial resolution and spectral resolution of the image, and propose a remote sensing image preprocessing method, which is suitable for the special geomorphology of the intertidal zone, including the FLAASH radiation. Correction method and geometric correction of LGCP method.
(6) when monitoring a specific intertidal zone, a combination of visible light water depth method and water content method is used for coastal shallow sea terrain. For near Shore beaches, the method of water content and tidal basin method are used. For sand ridges, the sand ridge characteristic line method and the tidal channel axis method are used. And the South Yellow Sea radiation sand ridge group is selected as the supervision. The object carries out a specific case analysis. The process is the analysis of the monitoring objects, the selection and execution of the monitoring methods, the evaluation of the accuracy and the results of the monitoring. The system has completed the application of the system. It has proved that the system has a strong practical operation and a wide range of application.
【學位授予單位】:南京師范大學
【學位級別】:博士
【學位授予年份】:2013
【分類號】:P237;P714
【參考文獻】
相關期刊論文 前10條
1 王占宏;成燕輝;姜翔鸞;;遙感影像平面圖技術標準的研究[J];測繪標準化;1996年04期
2 陸惠文,,楊裕利;煙臺市海岸帶遙感研究[J];武測科技;1995年04期
3 鄭宗生;周云軒;劉志國;田波;;基于水動力模型及遙感水邊線方法的潮灘高程反演[J];長江流域資源與環(huán)境;2008年05期
4 杜國慶;史照良;龔越新;李鐵軍;;LIDAR技術在江蘇沿海灘涂測繪中的應用研究[J];城市勘測;2007年05期
5 范開國;傅斌;黃韋艮;賀明霞;;淺海水下地形的SAR遙感仿真研究[J];海洋學研究;2009年02期
6 韓震,惲才興,蔣雪中,楊鋒杰;溫州地區(qū)淤泥質潮灘沖淤遙感反演研究[J];地理與地理信息科學;2003年06期
7 張忍順;中國潮汐汊道研究的進展[J];地球科學進展;1994年04期
8 朱紹攀;陳宇;;大氣輻射校正方法分析[J];地理空間信息;2010年01期
9 郭清風;張峰;范巍;;關于Lidar數據的灘涂、海岸帶主要地物提取方法[J];地理空間信息;2011年04期
10 李澤軍;王小青;于祥禎;劉磊;;SAR圖像反演淺海地形的一種改進方法[J];電子測量技術;2012年04期
相關博士學位論文 前4條
1 王滿;基于布局優(yōu)化的中國林業(yè)產業(yè)體系建設研究[D];中南林業(yè)科技大學;2010年
2 溫紅艷;遙感圖像拼接算法研究[D];華中科技大學;2009年
3 舒宇;基于能力需求的武器裝備體系結構建模方法與應用研究[D];國防科學技術大學;2009年
4 李歡;潮間帶露灘地形的遙感測量方法研究[D];南京師范大學;2012年
本文編號:2021073
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2021073.html