高精度雙向時(shí)間頻率比對(duì)技術(shù)與實(shí)現(xiàn)研究
本文選題:雙向時(shí)間比對(duì)技術(shù) + 相位噪聲; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:隨著科學(xué)技術(shù)的飛速發(fā)展,全球化通信也變得越來(lái)越發(fā)達(dá),常常需要在遙遠(yuǎn)的兩地之間建立統(tǒng)一的時(shí)間頻率標(biāo)準(zhǔn),所以為了實(shí)現(xiàn)時(shí)間頻率統(tǒng)一的技術(shù)手段也日益發(fā)展。特別是近年來(lái),隨著通信技術(shù)的飛躍發(fā)展,在測(cè)控系統(tǒng)、雷達(dá)系統(tǒng)、導(dǎo)航系統(tǒng)等多個(gè)領(lǐng)域中,對(duì)統(tǒng)一時(shí)間的精度要求越來(lái)越高。目前高精度時(shí)間頻率的同步方法主要有GPS衛(wèi)星共視法和衛(wèi)星雙向時(shí)間頻率法兩種。共視法借助衛(wèi)星導(dǎo)航系統(tǒng)實(shí)現(xiàn)時(shí)頻同步,但由于導(dǎo)航信號(hào)弱易受外界各種干擾影響,因此精度有限且實(shí)時(shí)性也較差;時(shí)間頻率雙向比對(duì)方式主要是利用專用衛(wèi)通設(shè)備,通過同步衛(wèi)星透明轉(zhuǎn)發(fā)器互相通信實(shí)現(xiàn),精度高、實(shí)時(shí)性好,具有一定的抗干擾能力。由于衛(wèi)星雙向時(shí)間頻率比對(duì)法的技術(shù)優(yōu)越性,目前國(guó)際電信聯(lián)盟已將其作為時(shí)間比對(duì)及統(tǒng)一的主要手段。隨著GPS技術(shù)的成熟利用,人們通常利用GPS衛(wèi)星共視法來(lái)實(shí)現(xiàn)遠(yuǎn)距離的時(shí)間統(tǒng)一,但是GPS共視法很難達(dá)到幾納秒級(jí)的授時(shí)精度。為了進(jìn)一步提高授時(shí)精度,近幾年來(lái)衛(wèi)星雙向時(shí)間頻率比對(duì)法逐步走入人們的視野,并廣泛的應(yīng)用于測(cè)控系統(tǒng)、雷達(dá)系統(tǒng)、導(dǎo)航系統(tǒng)等多個(gè)領(lǐng)域中。怎樣提高衛(wèi)星雙向時(shí)間頻率比對(duì)法的授時(shí)精度、抗干擾能力成為了科研人員研究討論的重要話題。本論文首先介紹了雙向時(shí)間頻率比對(duì)技術(shù)的概念,接下來(lái)對(duì)其工作原理進(jìn)行了闡述,并對(duì)其工作流程進(jìn)行了詳細(xì)的介紹,說明了系統(tǒng)結(jié)構(gòu)與體制設(shè)計(jì)。接著深入分析了雙向時(shí)間頻率比對(duì)設(shè)備組成和工作原理,對(duì)組成模塊進(jìn)行了詳細(xì)的功能描述,并對(duì)涉及到的關(guān)鍵技術(shù)進(jìn)行了闡述。最后利用兩套衛(wèi)星雙向時(shí)間頻率比對(duì)設(shè)備進(jìn)行了中頻指標(biāo)測(cè)試以及射頻指標(biāo)測(cè)試。從測(cè)試結(jié)果可以得出,中頻授時(shí)精度能夠小于3ns,射頻授時(shí)精度能夠小于10ns。相比較GPS衛(wèi)星共視法而言,雙向時(shí)間頻率比對(duì)技術(shù)的優(yōu)勢(shì)較為明顯,應(yīng)用前景非常廣泛。
[Abstract]:With the rapid development of science and technology, global communication has become more and more developed. It is often necessary to establish a unified standard of time and frequency between distant places. Therefore, in order to realize the unification of time and frequency, the technical means are also increasingly developed. Especially in recent years, with the rapid development of communication technology, in many fields, such as measurement and control system, radar system, navigation system and so on, the accuracy of unified time is becoming more and more high. At present, there are two kinds of synchronization methods of high precision time frequency: GPS satellite common view method and satellite bidirectional time frequency method. The method of common view realizes time-frequency synchronization with satellite navigation system, but because navigation signal is weak and easily affected by various kinds of external interference, the accuracy is limited and the real-time performance is also poor. The method of two-way comparison of time and frequency is mainly by using special satellite communication equipment. By using the transparent transponder of synchronous satellite to communicate with each other, the accuracy is high, the real time is good, and the anti-jamming ability is certain. Because of the technical superiority of the bidirectional time-frequency comparison method, the International Telecommunication Union has taken it as the main means of time comparison and unification. With the mature use of GPS technology, people usually use GPS satellite common view method to realize long distance time unification, but GPS common view method is difficult to achieve several nanosecond precision. In order to further improve the accuracy of time service, in recent years, satellite bidirectional time-frequency comparison method has gradually come into people's view, and has been widely used in many fields, such as measurement and control system, radar system, navigation system and so on. How to improve the accuracy and anti-jamming ability of satellite bidirectional time-frequency comparison method has become an important topic for researchers to discuss. This paper first introduces the concept of bidirectional time-frequency comparison technology, then expounds its working principle, and introduces its working flow in detail, and explains the system structure and system design. Then, the composition and working principle of the bidirectional time-frequency ratio equipment are analyzed in depth, the function of the component module is described in detail, and the key technologies involved are described. Finally, two sets of satellite bidirectional time and frequency comparison equipment are used to test if index and RF index. From the test results, it can be concluded that the intermediate frequency timing accuracy can be less than 3ns, and the RF timing accuracy can be less than 10ns. Compared with GPS satellite common view method, bidirectional time and frequency comparison technology has obvious advantages and has a wide application prospect.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P228.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 舒炳江;;高精度雙向時(shí)間比對(duì)同步技術(shù)原理與應(yīng)用[J];電訊技術(shù);2009年01期
2 譚述森;;北斗衛(wèi)星導(dǎo)航系統(tǒng)的發(fā)展與思考[J];宇航學(xué)報(bào);2008年02期
3 江志恒;;GPS全視法時(shí)間傳遞回顧與展望[J];宇航計(jì)測(cè)技術(shù);2007年S1期
4 譚述森;;導(dǎo)航衛(wèi)星雙向偽距時(shí)間同步[J];中國(guó)工程科學(xué);2006年12期
5 帥平;曲廣吉;陳忠貴;;導(dǎo)航星座自主導(dǎo)航技術(shù)研究[J];中國(guó)工程科學(xué);2006年03期
6 李志剛;喬榮川;馮初剛;;衛(wèi)星雙向法與衛(wèi)星測(cè)距[J];飛行器測(cè)控學(xué)報(bào);2006年03期
7 劉嘉興;;載人航天USB測(cè)控系統(tǒng)及其關(guān)鍵技術(shù)[J];宇航學(xué)報(bào);2005年06期
8 馬英;羅蘭-C系統(tǒng)時(shí)間定位技術(shù)與應(yīng)用[J];中國(guó)測(cè)試技術(shù);2005年03期
9 閔紫辰,高西全,韓學(xué)義;雙向時(shí)間傳輸數(shù)字中頻接收系統(tǒng)的實(shí)現(xiàn)[J];空間電子技術(shù);2005年01期
10 張?jiān)?高小s,
本文編號(hào):2008578
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2008578.html