低軌衛(wèi)星編隊(duì)星載GPS相對(duì)定軌理論及應(yīng)用
本文選題:衛(wèi)星編隊(duì) + GPS。 參考:《武漢大學(xué)》2014年博士論文
【摘要】:隨著GPS定位、定軌技術(shù)的發(fā)展和精度的提高,利用星載GPS對(duì)低軌衛(wèi)星進(jìn)行相對(duì)定軌已經(jīng)成為一種有效的方式,可以達(dá)到cm級(jí)乃至mm級(jí)的相對(duì)定軌精度。同地面GPS一樣,星載GPS也受到相位中心延遲、電離層延遲等誤差的影響,也要通過(guò)解算整周模糊度提高定軌精度。同時(shí),由于星載GPS星座變換迅速,衛(wèi)星間共視衛(wèi)星較地面站少,因而數(shù)據(jù)處理過(guò)程更為復(fù)雜。 本文的主要研究?jī)?nèi)容和創(chuàng)新點(diǎn)如下: 1.針對(duì)星載GPS觀測(cè)數(shù)據(jù)的特點(diǎn),詳細(xì)分析了GRACE星載GPS的可視性、DOP值及C/No等信息,利用切比雪夫多項(xiàng)式對(duì)軌道和鐘差進(jìn)行了擬合,并利用偽距相位組合法、電離層殘差法、M-W組合法對(duì)星載GPS觀測(cè)數(shù)據(jù)進(jìn)行了粗差和周跳探測(cè)。 2.研究了星載GPS衛(wèi)星和接收機(jī)天線相位中心延遲(PCO)和變化(PCV),比較了不同改正方式下的衛(wèi)星PCO,將IGS發(fā)布的衛(wèi)星PCV改正值由天底角14°擴(kuò)展到15°,將NGS提供的接收機(jī)PCV校準(zhǔn)值由高度角80°擴(kuò)展到90°,分析了GFZ改正值的使用和坐標(biāo)轉(zhuǎn)換方法,以及相位中心改正對(duì)GRACE相對(duì)定軌的影響。研究表明:使用IGS絕對(duì)模型進(jìn)行衛(wèi)星天線相位中心改正,并使用GFZ產(chǎn)品進(jìn)行星載接收機(jī)天線相位中心改正時(shí)結(jié)果最優(yōu)。 3.提出了一種適用于星載單頻GPS的改進(jìn)的電離層改正模型及其近似算法。分析了星載GPS的單層模型投影函數(shù),并計(jì)算了不同單層高度下的值。計(jì)算了500km單層高度下GRACE衛(wèi)星對(duì)應(yīng)的穿刺點(diǎn)軌跡。利用改進(jìn)的Klobuchar模型和比例因子來(lái)得到GRACE衛(wèi)星軌道以上電離層部分的延遲量,并利用雙頻觀測(cè)值進(jìn)行了驗(yàn)證。研究表明,對(duì)GRACE衛(wèi)星而言,單層高度需從350km調(diào)整到500km;改進(jìn)的Klobuchar算法中,地心角和傾斜因子的近似形式精度足夠;試驗(yàn)數(shù)據(jù)中,改進(jìn)的Klobuchar算法可以改正大于80%的電離層延遲。 4.探討了星載GPS電離層延遲及接收機(jī)硬件延遲的計(jì)算方法和影響。低軌衛(wèi)星只受到其軌道高度以上電離層部分的影響,這一影響可以通過(guò)地面以上電離層的延遲乘上一個(gè)比例因子來(lái)得到。本文利用雙頻觀測(cè)值和GIM、Klobuchar模型或改進(jìn)的Klobuchar模型間的相關(guān)性計(jì)算出比例因子和接收機(jī)硬件延遲,并利用GRACE星載GPS數(shù)據(jù)進(jìn)行了驗(yàn)證。結(jié)果表明,比例因子與接收機(jī)高度、視線方向TEC值以及采用的電離層改正方法等因素有關(guān),本文采用的數(shù)據(jù)中,利用雙頻觀測(cè)值和GIM的相互關(guān)系求得的比例因子和接收機(jī)硬件延遲比較規(guī)律,而Klobuchar方法則與TEC值密切相關(guān),但都可以提高相對(duì)定軌的精度。 5.探討了星載GPS相對(duì)定軌初值的確定、浮點(diǎn)解的求解、模糊度的固定等問(wèn)題。分別采用適用于星載GPS的寬巷法和LAMBDA方法進(jìn)行模糊度固定,并對(duì)解算結(jié)果進(jìn)行了分析。本文采用的數(shù)據(jù)中,采用平均取整法固定寬巷模糊度時(shí),GRACE A和B模糊度固定的成功率都在60%以上;利用電離層模型固定寬巷模糊度時(shí),成功率約70.2%。采用LAMBDA法時(shí),模糊度固定后,解的精度大大提高。 6.分析了GRACE衛(wèi)星搭載的KBR系統(tǒng)的基本原理和觀測(cè)模型,并與GPS雙差模型比較,得到GPS/KBR聯(lián)合解算的模型,并給出一種利用信噪比(SNR)和載噪比(C/N0)確定KBR單位權(quán)標(biāo)準(zhǔn)差的方法;陔p差GPS、GPS/KBR觀測(cè)方程,首先利用雙向卡爾曼濾波求得GRACE雙星相對(duì)定軌結(jié)果,然后利用一般LAMBDA法、附加KBR星間距離約束的LAMBDA法解算整周模糊度,繼而求得固定解。研究結(jié)果表明,KBR可以作為一個(gè)新的觀測(cè)值類型,與GPS一起解算時(shí)可以提高定軌精度,KBR星間約束有利于固定更多的模糊度,試驗(yàn)數(shù)據(jù)中,GPS/KBR聯(lián)合解算精度優(yōu)于3cm (RMS)。
[Abstract]:With the development of GPS positioning, the development of orbit determination technology and the improvement of precision, it has become an effective way to make the relative orbit determination of the low orbit satellite using the spaceborne GPS, which can reach the relative orbit determination precision of the cm level and the mm level. As with the ground GPS, the spaceborne GPS is also affected by the phase center delay, the ionospheric delay and other errors. The ambiguity resolution improves the orbit determination accuracy. At the same time, due to the rapid transformation of satellite GPS constellation, the satellite to satellite is less than the ground station, so the data processing is more complicated.
The main contents and innovations of this paper are as follows:
1. according to the characteristics of spaceborne GPS observation data, the visibility, DOP value and C/No information of GRACE spaceborne GPS are analyzed in detail. The orbit and clock difference are fitted by Chebyshev polynomial, and the pseudo distance phase combination method, the ionospheric residual method and the M-W combination method are used to detect the rough and circumferential jump of the spaceborne GPS observation data.
2. the phase center delay (PCO) and change (PCV) of spaceborne GPS satellite and receiver antenna are studied. The satellite PCO under different corrections is compared. The PCV correction value issued by IGS is extended from 14 degrees to 15 degrees, and the PCV calibration value provided by NGS is extended from 80 degrees to 90 degrees, and the use of the GFZ correction value and the coordinate conversion are analyzed. The method, and the correction of the phase center correction on the relative orbit determination of GRACE. The study shows that the IGS absolute model is used to correct the phase center of the satellite antenna, and the result is optimal when the phase center of the spaceborne receiver antenna is corrected by using the GFZ product.
3. an improved ionospheric correction model and its approximate algorithm for spaceborne single frequency GPS are proposed. The single layer model projection function of the spaceborne GPS is analyzed, and the values at different single layer heights are calculated. The trajectory of the puncture point corresponding to the GRACE satellite at the 500km single layer height is calculated. The modified Klobuchar model and the proportional factor are used to obtain the G. The delay of the ionosphere above the RACE satellite orbit is verified by two frequency observations. The study shows that, for the GRACE satellite, the single layer height needs to be adjusted from 350km to 500km; in the improved Klobuchar algorithm, the approximate form accuracy of the core angle and the inclination factor is sufficient; in the experimental data, the improved Klobuchar algorithm can be corrected. The ionosphere delay greater than 80%.
4. the calculation method and influence of the spaceborne GPS ionospheric delay and the receiver hardware delay are discussed. The low orbit satellite is only affected by the ionosphere part of its orbit height. This effect can be obtained by multiplying a proportional factor by the delay of the ionosphere above the ground. This paper uses the dual frequency observation value and the GIM, Klobuchar model or improvement. The correlation between the Klobuchar models and the receiver hardware delay are calculated and verified with the GRACE borne GPS data. The results show that the ratio factor is related to the height of the receiver, the TEC value of the line of sight and the method of the ionospheric correction. In this paper, the two frequency observations and the GIM are used in the data collected in this paper. The relationship between the proportional factor and the receiver hardware delay is obtained, while the Klobuchar method is closely related to the TEC value. However, the accuracy of relative orbit determination can be improved.
5. the problems of determining the initial value of the spaceborne GPS relative fixed orbit, solving the floating point solution and fixing the fuzzy degree are discussed. The fuzzy degree is fixed with the wide lane method and the LAMBDA method applied to the spaceborne GPS, and the results are analyzed. In the data adopted in this paper, the fuzzy degree of GRACE A and B is used to fix the ambiguity of the wide lane, and the fuzzy degree of the A and the B. The fixed success rate is more than 60%. When using the ionosphere model to fix the width of the wide lane, the success rate is about 70.2%. LAMBDA method. The accuracy of the solution is greatly improved after the fuzzy degree is fixed.
6. analysis the basic principle and observation model of the KBR system carried by GRACE satellite, and compare with the GPS double difference model, get the GPS/KBR joint calculation model, and give a method to determine the standard deviation of KBR unit weight by the signal to noise ratio (SNR) and the carrier noise ratio (C/N0). Based on the double difference GPS, the GPS/KBR observation equation, first use the bidirectional Calman filter to obtain the method. GRACE binary star relative orbit determination results, then using the general LAMBDA method, additional KBR INTERSTAR distance constraint LAMBDA method to solve the integer ambiguity, and then get the fixed solution. The results show that KBR can be a new type of observation value, and the solution calculation with GPS can improve the precision of the orbit, KBR INTERSTAR constraint is beneficial to fixed more fuzziness. The accuracy of GPS/KBR combined calculation is better than that of 3cm (RMS).
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:P228.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉紅衛(wèi);王兆魁;張育林;;內(nèi)編隊(duì)地球重力場(chǎng)測(cè)量性能數(shù)值分析[J];國(guó)防科技大學(xué)學(xué)報(bào);2013年04期
2 楊霞;李建成;;低軌衛(wèi)星星載GPS數(shù)據(jù)分析[J];測(cè)繪通報(bào);2013年06期
3 張小紅;李盼;李星星;郭斐;;天線相位中心改正模型對(duì)PPP參數(shù)估計(jì)的影響[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2011年12期
4 林益明;何善寶;鄭晉軍;初海彬;;全球?qū)Ш叫亲情g鏈路技術(shù)發(fā)展建議[J];航天器工程;2010年06期
5 萬(wàn)祥;張孟陽(yáng);;GPS相對(duì)定位在重力衛(wèi)星KBR測(cè)距中的應(yīng)用[J];電子設(shè)計(jì)工程;2010年09期
6 張小紅;李星星;郭斐;張明;;GPS單頻精密單點(diǎn)定位軟件實(shí)現(xiàn)與精度分析[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2008年08期
7 廖偉迅;;Klobuchar模型的解讀[J];韶關(guān)學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年12期
8 劉洋;易東云;王正明;;編隊(duì)衛(wèi)星星間相對(duì)狀態(tài)測(cè)量的國(guó)外研究現(xiàn)狀[J];飛行器測(cè)控學(xué)報(bào);2006年02期
9 帥平;曲廣吉;;衛(wèi)星導(dǎo)航定位方程的病態(tài)條件[J];飛行器測(cè)控學(xué)報(bào);2006年01期
10 陳谷倉(cāng),王元?dú)J,馬宏,王天祥;小衛(wèi)星分布式雷達(dá)空間狀態(tài)測(cè)量方法[J];裝備指揮技術(shù)學(xué)院學(xué)報(bào);2005年04期
相關(guān)博士學(xué)位論文 前8條
1 趙倩;利用衛(wèi)星編隊(duì)探測(cè)地球重力場(chǎng)的方法研究與仿真分析[D];武漢大學(xué);2012年
2 苗贏;星載GPS技術(shù)在航天器編隊(duì)定軌中的應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2010年
3 秦顯平;星載GPS低軌衛(wèi)星定軌理論及方法研究[D];解放軍信息工程大學(xué);2009年
4 劉洋;編隊(duì)衛(wèi)星的星間基線確定方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2007年
5 宋迎春;動(dòng)態(tài)定位中的卡爾曼濾波研究[D];中南大學(xué);2006年
6 劉紅新;CHAMP衛(wèi)星定軌方法研究[D];同濟(jì)大學(xué);2006年
7 呂從民;星載GPS實(shí)時(shí)定軌方法研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2004年
8 韓保民;基于星載GPS的低軌衛(wèi)星幾何法定軌理論研究[D];中國(guó)科學(xué)院研究生院(測(cè)量與地球物理研究所);2003年
相關(guān)碩士學(xué)位論文 前1條
1 楊霞;GNSS數(shù)據(jù)融合關(guān)鍵技術(shù)研究[D];山東科技大學(xué);2009年
,本文編號(hào):1959936
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1959936.html