無(wú)人機(jī)核線影像的稀疏匹配與稠密匹配
發(fā)布時(shí)間:2018-05-14 15:58
本文選題:SIFT算子 + 稀疏匹配 ; 參考:《測(cè)繪通報(bào)》2017年05期
【摘要】:無(wú)人機(jī)影像轉(zhuǎn)化為水平核線影像后,能夠有效地減少同名點(diǎn)的搜索空間。在此基礎(chǔ)上,本文使用SIFT算子進(jìn)行了稀疏匹配,并用BP算法進(jìn)行了稠密匹配。結(jié)果表明:(1)SIFT算子獲取的同名點(diǎn)比較少,但是計(jì)算方法簡(jiǎn)單,同名點(diǎn)空間坐標(biāo)精確,適用于大范圍獲取簡(jiǎn)要的空間三維信息;(2)BP算法計(jì)算復(fù)雜度高,可以獲取地物大量的同名點(diǎn),適用于小范圍的地物三維重建?傮w而言,兩者各有優(yōu)缺點(diǎn),在實(shí)際的應(yīng)用中可互補(bǔ)。
[Abstract]:After the UAV image is converted to the horizontal nuclear line image, it can effectively reduce the search space of the same name points. On this basis, this paper uses the SIFT operator to carry out a sparse match, and uses the BP algorithm to carry out a dense matching. The results show that: (1) the SIFT operator obtains less homonymous points, but the calculation method is simple, the space coordinates of the same name point are accurate and suitable. It is used to obtain a wide range of spatial information in a wide range; (2) the BP algorithm has high computational complexity and can obtain a large number of homonyms of ground objects. It is suitable for a small area of three-dimensional reconstruction of ground objects. In general, both have advantages and disadvantages, and can complement each other in practical applications.
【作者單位】: 北京信息職業(yè)技術(shù)學(xué)院;長(zhǎng)江水利委員會(huì)長(zhǎng)江科學(xué)院;中國(guó)地質(zhì)大學(xué)(北京);
【基金】:國(guó)家自然科學(xué)基金(41601298)
【分類號(hào)】:P237;TP391.41
,
本文編號(hào):1888539
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1888539.html
最近更新
教材專著