天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 測繪論文 >

單站高頻GNSS求解同震位移的新方法及聯(lián)合強(qiáng)震儀的地震預(yù)警應(yīng)用研究

發(fā)布時(shí)間:2018-05-10 17:18

  本文選題:地震預(yù)警 + 同震位移。 參考:《武漢大學(xué)》2015年博士論文


【摘要】:地震是地球上最為常見的自然災(zāi)害之一,其中極具破壞力的大地震帶來的原生災(zāi)害、次生災(zāi)害和衍生災(zāi)害給人類造成了巨大的威脅。雖然無法控制和避免地震的發(fā)生,但是人類也在積極地尋求應(yīng)對之策。目前,在準(zhǔn)確的地震短期預(yù)測還無法實(shí)現(xiàn)的情況下,地震預(yù)警便是一種行之有效的防震減災(zāi)措施。歷經(jīng)三十年的探索和努力,很多國家和地區(qū)建立了以地震儀/強(qiáng)震儀為基礎(chǔ)的地震預(yù)警系統(tǒng),并且取得了眾多成功預(yù)警的實(shí)例。但是,這樣的地震預(yù)警系統(tǒng)在應(yīng)對大地震時(shí)(M7)還存在問題,尤其在地震震級估算上容易“失靈”。這是由于地震震級估算與震時(shí)地表位移密切相關(guān),受基線偏差和量程限幅的影響,地/強(qiáng)震儀很難準(zhǔn)確把其測量值轉(zhuǎn)化為與地震過程相吻合的地面位移值。因此,如何快速、準(zhǔn)確獲取震時(shí)地表位移成為了地震預(yù)警系統(tǒng)可靠運(yùn)行必須解決的關(guān)鍵問題。近年來,隨著高頻GNSS技術(shù)(高采樣率數(shù)據(jù),存儲(chǔ)技術(shù)等)的快速發(fā)展,其已能用于監(jiān)測短期瞬時(shí)的地表運(yùn)動(dòng)狀態(tài)。由于GNSS不會(huì)受到類似于地/強(qiáng)震儀器記錄限幅和傾斜的影響,因而即使在大地震中,也可以較好地獲取地震近場同震位移,為地震預(yù)警提供了一種新的、可靠的觀測手段。雖然高頻GNSS在獲取震時(shí)地表位移上具有優(yōu)勢,但是相對于地/強(qiáng)震儀而言,它在實(shí)時(shí)地震監(jiān)測和預(yù)警應(yīng)用中還存在一些限制因素和挑戰(zhàn):(1)GNSS的直接觀測量是偽距、載波相位和多普勒觀測值,準(zhǔn)確的測站位置和速度信息需要通過高精度的數(shù)據(jù)處理算法才能獲得,而且這些算法還需具備實(shí)時(shí)性;(2)GNSS的測量噪聲較大,對微弱地表震動(dòng)不敏感,不易拾取到初至地震波;(3)GNSS受限于接收機(jī)的頻帶寬度,無法獲得與地/強(qiáng)震儀相當(dāng)?shù)牟蓸勇?200 Hz甚至400 Hz)。因此,高頻GNSS和地/強(qiáng)震儀具有明顯的優(yōu)勢互補(bǔ)性。聯(lián)合兩者將有助于提高地震預(yù)警的準(zhǔn)確性和時(shí)效性,這也是當(dāng)前地震學(xué)的研究熱點(diǎn)和前沿課題。本論文旨在將高頻GNSS技術(shù)引入到現(xiàn)行地震預(yù)警系統(tǒng)中,以增強(qiáng)其在面對大地震時(shí)的預(yù)警能力。圍繞這一核心目標(biāo),本文主要從數(shù)據(jù)處理的角度出發(fā),深入研究并提出了單站GNSS單歷元求解測站同震位移的新方法,詳細(xì)推導(dǎo)并建立了GNSS和強(qiáng)震儀組合模型,實(shí)現(xiàn)了兩者聯(lián)合進(jìn)行地震預(yù)警應(yīng)用的目的。論文的主要工作和貢獻(xiàn)如下:(1)系統(tǒng)研究了常用的兩種利用單站GNSS求解同震位移的方法:精密單點(diǎn)定位(PPP)和單站測速方法。首先介紹了各方法的基本原理,然后建立了相應(yīng)的求解同震位移模型,最后結(jié)合具體地震事件分析了各方法的應(yīng)用效果。深入分析了接收機(jī)鐘跳對單站測速法的不利影響,提出了一種顧及接收機(jī)鐘跳影響的多普勒觀測值構(gòu)造方法,并用動(dòng)態(tài)和靜態(tài)算例驗(yàn)證了所提方法的可行性和有效性。(2)以單站GNSS實(shí)時(shí)準(zhǔn)確獲取同震位移為目標(biāo),并結(jié)合地震應(yīng)用的實(shí)際需求(獲取一段時(shí)間的同震位移,并且震前測站坐標(biāo)已知),從GNSS基本觀測模型出發(fā),提出了一種直接求解測站同震位移的新方法——(附有已知坐標(biāo)的)歷元間位置差法。根據(jù)數(shù)據(jù)處理策略的不同,歷元間位置差法又可細(xì)分成TPP法和R-variometric法。從函數(shù)模型的角度出發(fā),證明了PPP法,TPP法和R-variometric法的等價(jià)性。詳細(xì)分析了該方法中所包含的各種主要誤差對位移的影響,并給出相應(yīng)的解決策略。在顧及各項(xiàng)誤差改正后,采用歷元間位置差法模型能夠獲得與事后PPP法精度相當(dāng)?shù)耐鹞灰。?shí)例結(jié)果表明:在20分鐘的時(shí)間里,該法所獲得同震位移的精度在水平方向上約為3厘米,在垂直方向上約為5厘米。(3)針對地震監(jiān)測和預(yù)警需要高密度的站網(wǎng)需求以及雙頻GNSS接收機(jī)成本高昂等問題,提出了一種電離層空域建模模型——MSEID模型,將歷元間位置差法的適用范圍從雙頻接收機(jī)拓展至單頻接收機(jī),從而使單頻接收機(jī)能夠高精度的獲取同震位移并用于大范圍加密現(xiàn)有的雙頻GNSS觀測臺(tái)網(wǎng)。詳細(xì)分析和討論了MSEID模型恢復(fù)電離層延遲的有效性,所提模型獲得位移的準(zhǔn)確性以及適用性。實(shí)例結(jié)果表明:MSEID模型能夠足夠精確的恢復(fù)出電離層延遲變化情況,并且比SEID模型的計(jì)算效率更高;所提模型存在一定的適用范圍,對于網(wǎng)內(nèi)加密,雙頻測站間距最好小于80公里,對于網(wǎng)外加密,單頻測站距離雙頻測站的平均間距最好在50公里范圍內(nèi);以雙頻觀測數(shù)據(jù)計(jì)算的同震位移作為參照,所提模型能夠獲得準(zhǔn)確的同震位移,精度在平面方向?yàn)?厘米,高程方向上為4厘米。(4)詳細(xì)對比和分析了強(qiáng)震儀和高頻GNSS兩種觀測手段在獲取同震位移時(shí)的優(yōu)缺點(diǎn)。為了克服單一儀器的不足,提出了顧及基線偏差改正的GNSS和強(qiáng)震儀組合模型。實(shí)例驗(yàn)證表明:通過Kalman濾波算法能夠?qū)煞N觀測儀器的優(yōu)勢充分結(jié)合起來,充分發(fā)揮其各自優(yōu)勢,獲得了更為準(zhǔn)確的寬頻帶同震位移。在濾波的早期階段具有更多強(qiáng)震儀結(jié)果的特性,可用于探測測站或地面微弱地運(yùn)動(dòng);而在濾波的中后期,則受到更多GNSS位移結(jié)果的約束,使得組合位移不會(huì)發(fā)散,因而能夠準(zhǔn)確地記錄地震波的低頻信息。(5)開展了聯(lián)合高頻GNSS和強(qiáng)震儀在地震預(yù)警中的應(yīng)用研究工作,詳細(xì)探討并分析了基于組合位移結(jié)果進(jìn)行地震波到時(shí)拾取、地震震中位置確定以及地震震級估算的方法及其效果。以東日本大地震為例,聯(lián)合使用STA/LTA方法和AIC準(zhǔn)則進(jìn)行地震波P波到時(shí)拾取,所得結(jié)果與理論到時(shí)平均時(shí)延約0.8秒;采用Geiger法和網(wǎng)格搜索法進(jìn)行地震震中確定,能在震后18.52秒,分別獲得17公里和4公里偏差的震中位置,相應(yīng)的地震發(fā)震時(shí)刻偏差在0.5s范圍內(nèi);根據(jù)峰值位移(Pd與PGD)與地震震級的經(jīng)驗(yàn)關(guān)系進(jìn)行震級估算和預(yù)警信息播報(bào),在震后26.35秒可進(jìn)行第一次預(yù)警播報(bào),相應(yīng)震級為Mw 7.4,在震后102.19秒進(jìn)行最后一次播報(bào),可獲得Mw 8.9的預(yù)警最終震級。上述結(jié)果表明基于組合的方式,能夠獲得足夠精確的位移結(jié)果,可用于P波探測,能夠在較短時(shí)間內(nèi)(102.19秒)獲得與真實(shí)震級十分接近的最終震級而未發(fā)生震級飽和現(xiàn)象,這對于增強(qiáng)現(xiàn)有地震預(yù)警系統(tǒng)面對大地震時(shí)的能力具有極其重要的作用。
[Abstract]:Earthquake is one of the most common natural disasters on the earth, of which the devastating earthquake caused by the great earthquake, secondary and derivative disasters caused great threat to mankind. Although it is impossible to control and avoid the occurrence of earthquakes, human beings are also actively seeking countermeasures. At present, the accurate short-term prediction of earthquake is still available. Earthquake early warning is an effective measure of earthquake prevention and disaster reduction. After thirty years of exploration and efforts, many countries and regions have established seismic early warning system based on seismograph / strong seismograph, and have obtained many examples of successful early warning. M7) still exists problems, especially in earthquake magnitude estimation, which is easy to "fail". This is because the estimation of earthquake magnitude is closely related to the surface displacement of the earthquake. Influenced by the baseline deviation and the range limit, the ground / strong seismograph is difficult to accurately translate its measurement value into the ground displacement value that is consistent with the earthquake process. In recent years, with the rapid development of high frequency GNSS Technology (high sampling rate data, storage technology, etc.), the surface displacement has been the key problem to be solved in the reliable operation of the earthquake early warning system. It has been used to monitor the short-term instantaneous surface movement state. Since GNSS will not be affected by the amplitude and tilt of the records similar to the earth / strong seismic instruments, Therefore, even in a large earthquake, the same seismic displacement can be obtained well, which provides a new and reliable means of observation for earthquake early warning. Although the high frequency GNSS has the advantage of the ground displacement when obtaining the earthquake, there are still some restrictive factors in the real-time earthquake monitoring and early warning application relative to the ground / strong seismograph. And challenges: (1) the direct measurement of GNSS is pseudo range, carrier phase and Doppler observational value. Accurate location and velocity information of stations need to be obtained through high precision data processing algorithms, and these algorithms need to be real-time. (2) GNSS has a large measurement noise and is not sensitive to weak ground motion, and it is difficult to pick up the initial ground to the ground Seismic waves; (3) GNSS is limited to the band width of the receiver and can not obtain the equivalent sampling rate (200 Hz or even 400 Hz) with the earth / strong seismograph. Therefore, the high frequency GNSS and the ground / strong seismograph have obvious complementary advantages. The combination of the two will help to improve the accuracy and time effectiveness of earthquake early warning, which is also a hot and frontier course of seismology. The purpose of this paper is to introduce high frequency GNSS technology into the current earthquake warning system in order to enhance its early warning ability in the face of large earthquakes. In this paper, a new method of single station GNSS single epoch to solve the same earthquake displacement is studied and proposed in detail from the point of view of data processing, and GNS is derived and established in detail. The combined model of S and strong seismograph has been used to achieve the purpose of joint earthquake early warning application. The main work and contribution of this paper are as follows: (1) two methods used to solve the same earthquake displacement using single station (PPP) and single station velocity measurement are studied systematically. First, the basic principles of each method are introduced, and then the method is established. The same earthquake displacement model is solved and the application effect of each method is analyzed in the end. The adverse effect of the receiver clock jump on the single station velocity measurement is analyzed. A method of constructing the Doppler observation value considering the effect of the receiver's bell jump is proposed, and the feasibility of the proposed method is verified by the dynamic and static examples. And effectiveness. (2) taking the single station GNSS to obtain the same earthquake displacement in real time as the target, and combining the actual demand of the seismic application (obtaining a time of the same earthquake displacement and the known coordinates of the station before the earthquake), a new method of directly solving the same earthquake displacement of the station is proposed from the basic GNSS observation model, which is with the known coordinates. Position difference method. According to different data processing strategies, the location difference method between epochs can be subdivided into TPP method and R-variometric method. From the point of view of function model, the equivalence between PPP method, TPP method and R-variometric method is proved. The influence of various main errors on the displacement in this method is analyzed in detail, and the corresponding solutions are given. After taking into account the correction of various errors, the same seismic displacement equivalent to the ex post PPP method can be obtained by using the positional difference method between the epochs. The example shows that the accuracy of the same earthquake displacement obtained in the 20 minute time is about 3 cm in the horizontal direction and about 5 cm in the vertical direction. (3) for earthquake monitoring and early warning. With the need of high density station network and high cost of dual frequency GNSS receiver, an ionospheric spatial domain modeling model, MSEID model, is proposed. The application range of the location difference method between the epochs is extended from the dual frequency receiver to the single frequency receiver, so that the single frequency receiver can obtain the same earthquake displacement with high precision and be used in the large range. The existing dual frequency GNSS observation network is encrypted. The effectiveness of the MSEID model to restore the ionospheric delay is analyzed and discussed in detail. The accuracy and applicability of the proposed model are obtained. The results show that the MSEID model can restore the ionospheric delay change accurately enough, and is more efficient than the SEID model. The model has a certain range of application. For the network encryption, the spacing of the dual frequency station is best less than 80 kilometers. For the outside network encryption, the average distance between the two frequency stations of the single frequency station is best in the range of 50 kilometers, and the same earthquake displacement can be obtained with the same earthquake displacement calculated by the double frequency observation data. The direction of the plane is 2 cm and the elevation direction is 4 cm. (4) the advantages and disadvantages of the strong seismograph and the high frequency GNSS two observation means in obtaining the same earthquake displacement are compared and analyzed in detail. In order to overcome the shortage of the single instrument, the GNSS and the combined model of the strong seismograph are put forward to take into account the correction of the baseline deviation. The example shows that the Kalman filter algorithm can be used. It is sufficient to combine the advantages of the two observational instruments fully, give full play to their respective advantages, and obtain more accurate broadband coisiseismic displacement. In the early stage of filtering, more strong seismograph results can be used to detect the measurement stations or ground motion, but in the middle and later stages of filtering, the results of more GNSS displacement are about. As a result, the combination displacement will not diverge and can accurately record the low frequency information of seismic waves. (5) the application of combined high frequency GNSS and strong seismograph in earthquake early warning is carried out, and a detailed discussion and analysis are made on the basis of the combined displacement results to pick up seismic waves, determine the location of the earthquake epicentre and estimate the magnitude of the earthquake magnitude. The method and its effect. Taking the East Japan earthquake as an example, the STA/LTA method and the AIC criterion are combined to pick up the seismic wave P wave, and the results are about 0.8 seconds in the mean time delay of the theory, and the epicenter of the earthquake epicenter is determined by the Geiger method and the grid search method, and the epicenter position of 17 km and 4 km deviation can be obtained in the post earthquake, and the phase of the epicenter of 17 km and 4 km can be obtained. The seismic time deviation should be in the range of 0.5s, and the magnitude estimation and early warning information are carried out according to the empirical relationship between the peak displacement (Pd and PGD) and the earthquake magnitude. The first early-warning broadcast can be carried out in 26.35 seconds after the earthquake, the corresponding magnitude is Mw 7.4, the last broadcast is carried out in 102.19 seconds after the earthquake, and the final magnitude of the early warning of Mw 8.9 can be obtained. The above results show that the combination method can obtain enough accurate displacement results, which can be used for P wave detection, and can get the final magnitude close to the real magnitude in a short time (102.19 seconds) without magnitude saturation, which is very important to enhance the ability of the existing earthquake warning system to face the large earthquake. The role.

【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P315;P228.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 閆娜;;江蘇省GNSS連續(xù)運(yùn)行參考站網(wǎng)項(xiàng)目通過驗(yàn)收[J];測繪通報(bào);2007年02期

2 ;獲境外專業(yè)機(jī)構(gòu)青睞,合眾思壯高精GNSS產(chǎn)品邁入世界前列[J];北京測繪;2007年02期

3 ;中國GNSS技術(shù)打破歐美壟斷高精度測量產(chǎn)品角逐國際市場[J];江西測繪;2007年02期

4 ;合眾思壯獲海外定單標(biāo)志中國GNSS踏上自主創(chuàng)新成果產(chǎn)業(yè)化之路[J];現(xiàn)代測繪;2007年04期

5 ;十年中海達(dá) 中國GNSS產(chǎn)業(yè)化十年——中海達(dá)10周年慶典活動(dòng)拉開序幕[J];測繪技術(shù)裝備;2009年03期

6 楊永平;段德磊;;多功能手持GNSS在電力行業(yè)的應(yīng)用[J];電力與電工;2009年03期

7 薄萬舉;黃立人;李軍;程增杰;宋兆山;許明元;李文靜;李文一;;GNSS野外檢定場[J];測繪科學(xué);2009年S1期

8 季宇虹;王讓會(huì);;全球?qū)Ш蕉ㄎ幌到y(tǒng)GNSS的技術(shù)與應(yīng)用[J];全球定位系統(tǒng);2010年05期

9 董春來;周立;史建青;;GNSS多功能實(shí)驗(yàn)室的構(gòu)建與實(shí)踐[J];實(shí)驗(yàn)室研究與探索;2011年02期

10 Zhan Wei;Zhu Shuang;Yang Bo;Wu Yanqiang;Liu Zhiguang;Meng Xiangang;;Effects of the differences between the ITRF2000 and ITRF2005 models in GNSS data processing[J];Geodesy and Geodynamics;2013年04期

相關(guān)會(huì)議論文 前10條

1 張慧君;李孝輝;;GNSS系統(tǒng)時(shí)間偏差及其監(jiān)測與預(yù)報(bào)[A];2009全國時(shí)間頻率學(xué)術(shù)會(huì)議論文集[C];2009年

2 ;Supporting capability analysis of present spectrum management resources to GNSS IDM in China[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年

3 朱旭;;全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)在空中交通管理中的應(yīng)用進(jìn)展[A];中國通信學(xué)會(huì)第六屆學(xué)術(shù)年會(huì)論文集(上)[C];2009年

4 董紹武;;GNSS時(shí)間系統(tǒng)及其互操作[A];2009全國虛擬儀器大會(huì)論文集(二)[C];2009年

5 孫曉波;李冶天;;多模GNSS高精度授時(shí)在電力系統(tǒng)中的應(yīng)用分析[A];經(jīng)濟(jì)發(fā)展方式轉(zhuǎn)變與自主創(chuàng)新——第十二屆中國科學(xué)技術(shù)協(xié)會(huì)年會(huì)(第四卷)[C];2010年

6 胡曉;高偉;李本玉;;GNSS衛(wèi)星導(dǎo)航系統(tǒng)關(guān)鍵技術(shù)的研究與思考[A];《測繪通報(bào)》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年

7 高井祥;閆文林;王堅(jiān);;礦山變形災(zāi)害GNSS現(xiàn)代化監(jiān)測技術(shù)研究[A];《測繪通報(bào)》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年

8 馬利華;韓延本;;全球衛(wèi)星導(dǎo)航系統(tǒng)(GNSS)概述[A];中國地球物理學(xué)會(huì)第二十三屆年會(huì)論文集[C];2007年

9 ;A study of ionospheric scintillation effects on Differential GNSS[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S08衛(wèi)星導(dǎo)航模型與方法[C];2012年

10 甄衛(wèi)民;韓超;杜黎明;陳麗;;我國GNSS開放服務(wù)中的干擾檢測與減緩計(jì)劃[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年

相關(guān)重要報(bào)紙文章 前10條

1 王娜;我GNSS技術(shù)打破國外壟斷[N];科技日報(bào);2007年

2 陶渝;重慶建成國土資源GNSS網(wǎng)絡(luò)信息系統(tǒng)[N];中國測繪報(bào);2011年

3 記者 謝必如 特約記者 白文起 通訊員 陶渝;重慶建成國土資源GNSS網(wǎng)絡(luò)系統(tǒng)[N];中國國土資源報(bào);2011年

4 王巖;包頭用GNSS管理市政布局[N];中國建設(shè)報(bào);2010年

5 甘勃;“天眼”邁進(jìn)GNSS時(shí)代[N];大眾科技報(bào);2007年

6 王立彬;中國全球衛(wèi)星導(dǎo)航系統(tǒng),奪下千萬美元大單[N];新華每日電訊;2007年

7 通訊員 彭祥榮;“陸態(tài)網(wǎng)”民勤GNSS基準(zhǔn)站投入試運(yùn)行[N];中國氣象報(bào);2010年

8 記者 裴蕾;測繪氣象共建GNSS基準(zhǔn)站[N];四川日報(bào);2010年

9 王雅麗;實(shí)施國際化戰(zhàn)略[N];中國測繪報(bào);2010年

10 記者 張敏霞 通訊員 王存林;陸態(tài)網(wǎng)沱沱河GNSS基準(zhǔn)站建成并試運(yùn)行[N];格爾木日報(bào);2011年

相關(guān)博士學(xué)位論文 前10條

1 江鵬;地基GNSS探測2D/3D大氣水汽分布技術(shù)研究[D];武漢大學(xué);2014年

2 徐韶光;利用GNSS獲取動(dòng)態(tài)可降水量的理論與方法研究[D];西南交通大學(xué);2014年

3 李磊;基于GNSS的電離層總電子含量的預(yù)測與應(yīng)用研究[D];大連海事大學(xué);2015年

4 陳良;機(jī)載GNSS/SINS組合精密導(dǎo)航關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年

5 郭瑤;慣性輔助的高動(dòng)態(tài)GNSS基帶信號(hào)跟蹤技術(shù)[D];國防科學(xué)技術(shù)大學(xué);2013年

6 張亮;地面復(fù)雜環(huán)境下移動(dòng)三維測量精度改善方法研究[D];武漢大學(xué);2015年

7 甘雨;GNSS/INS組合系統(tǒng)模型精化及載波相位定位測姿[D];解放軍信息工程大學(xué);2015年

8 李俊毅;GNSS動(dòng)態(tài)相對定位算法研究[D];解放軍信息工程大學(xué);2013年

9 任燁;多場景下的GNSS完好性監(jiān)測方法研究[D];中國科學(xué)院研究生院(國家授時(shí)中心);2016年

10 陳華;基于原始觀測值的GNSS統(tǒng)一快速精密數(shù)據(jù)處理方法[D];武漢大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 劉成;GNSS-R應(yīng)用于測量表層土壤濕度及軟件設(shè)計(jì)[D];中國地質(zhì)大學(xué)(北京);2015年

2 高榮祥;基于GNSS信號(hào)的無源雷達(dá)目標(biāo)探測研究[D];中國地質(zhì)大學(xué)(北京);2015年

3 陳聞亞;基于Internet的GNSS高精度位置服務(wù)平臺(tái)研究與實(shí)現(xiàn)[D];西南交通大學(xué);2015年

4 楊晨云鸝;GNSS在地震矩反演中的應(yīng)用研究[D];西南交通大學(xué);2015年

5 張U,

本文編號(hào):1870181


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1870181.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b29ac***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com