基于決策樹的漓江上游土地覆蓋分類
發(fā)布時間:2018-03-19 19:12
本文選題:漓江上游 切入點:決策樹 出處:《測繪科學》2016年03期 論文類型:期刊論文
【摘要】:針對山區(qū)植被分類受地形復雜、植被類型多樣、驗證數(shù)據(jù)獲取困難等因素限制基于多光譜數(shù)據(jù)的亞熱帶山區(qū)土地利用/覆蓋分類存在困難,探究利用物候信息對亞熱帶山區(qū)植被實施分類的效果。綜合運用歸一化植被指數(shù)(NDVI)、比值植被指數(shù)(RVI)、歸一化水指數(shù)(NDWI),同時考慮到海拔高度對植被類型的影響,建立決策樹模型。該模型基于多時相Landsat TM影像,利用了不同地物類型的物候特征和光譜差異,將漓江上游地區(qū)分為8種土地覆蓋類型。實驗結果表明,分類結果總體精度達到86.40%,Kappa系數(shù)為0.83。
[Abstract]:In view of the difficulty of land use / cover classification in subtropical mountainous areas based on multi-spectral data, the classification of vegetation in mountainous areas is restricted by the complex terrain, diverse vegetation types and difficulty in obtaining data. To explore the effect of applying phenological information to classification of vegetation in subtropical mountain areas. Comprehensive use of normalized vegetation index (NDVI), ratio vegetation index (RVI), normalized water index (NDWI), and taking into account the influence of altitude on vegetation type, A decision tree model was established, which was based on multitemporal Landsat TM images, and was divided into 8 land cover types in the upper reaches of the Lijiang River by using the phenological characteristics and spectral differences of different ground objects. The experimental results show that the land cover of the upper reaches of the Lijiang River can be divided into 8 types. The overall accuracy of the classification is 86.40 and the Kappa coefficient is 0.83.
【作者單位】: 山東科技大學測繪科學與工程學院;中國科學院遙感與數(shù)字地球研究所數(shù)字地球重點實驗室;環(huán)境保護部衛(wèi)星環(huán)境應用中心;
【基金】:國家自然科學基金項目(41471369) 國家科技支撐計劃(2012BAC16B01)
【分類號】:P237
【參考文獻】
相關期刊論文 前1條
1 朱彪,陳安平,劉增力,李光照,方精云;廣西貓兒山植物群落物種組成、群落結構及樹種多樣性的垂直分布格局[J];生物多樣性;2004年01期
【共引文獻】
相關期刊論文 前10條
1 傅松玲;姚雪晗;;安徽省森林經(jīng)營碳匯技術芻議[J];安徽林業(yè)科技;2011年02期
2 竺琳;曹洪麟;羅遠周;王紹能;黃忠良;;廣西貓兒山2塊1hm~2永久樣地喬木組成動態(tài)分析[J];安徽農(nóng)業(yè)科學;2009年30期
3 李海防;段文軍;王金葉;王紹能;蔣得斌;李光平;;廣西貓兒山森林水源涵養(yǎng)功能及水資源供求評價[J];安徽農(nóng)業(yè)科學;2010年24期
4 朱s闃,
本文編號:1635616
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1635616.html
最近更新
教材專著