天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 測繪論文 >

基于分組LM算法的全波形LiDAR高斯分解

發(fā)布時間:2018-03-17 21:22

  本文選題:全波形Li 切入點:DAR 出處:《測繪與空間地理信息》2016年07期  論文類型:期刊論文


【摘要】:LM(Levenberg-Marquardt)算法是全波形機載激光雷達(Li DAR)數(shù)據(jù)高斯分解中求解模型參數(shù)的一種方法。針對其結(jié)果在一定程度上依賴初值、雅克比矩陣出現(xiàn)非數(shù)值導(dǎo)致無結(jié)果等問題,本文提出分組LM算法,以廣義高斯混合函數(shù)為模型,模型參數(shù)初始化后,將參數(shù)分組并使用LM算法依次對各組參數(shù)進行優(yōu)化,并生成點云。為驗證結(jié)果的可靠性,以系統(tǒng)點云為參考,與基于改進的EM(Expectation Maximum)算法全波形分解法做對比。結(jié)果表明,本方法不僅得到較高質(zhì)量的點云,而且得到回波位置和寬度等信息。
[Abstract]:The LMU Levenberg-Marquardt algorithm is a method to solve the model parameters in the decomposition of the data Gao Si of the full waveform airborne lidar / Li DAR. In view of the problem that the results depend on the initial value to some extent, the Jacobian matrix is nonnumerical and has no results. In this paper, a grouping LM algorithm is proposed, in which the generalized Gao Si mixed function is taken as the model. After the model parameters are initialized, the parameters are grouped and optimized by LM algorithm, and point clouds are generated to verify the reliability of the results. The system point cloud is taken as a reference and compared with the full-waveform decomposition method based on the improved EM(Expectation maximum algorithm. The results show that the method not only obtains a high quality point cloud, but also obtains the echo position and width information.
【作者單位】: 武漢大學(xué)遙感信息工程學(xué)院;武漢大學(xué)測繪遙感信息工程國家重點實驗室;浙江省第二測繪院;
【分類號】:P237

【相似文獻】

相關(guān)期刊論文 前1條

1 陳朋山;焦偉利;賈秀鵬;王威;;抗差LM算法求解遙感影像嚴格物理模型[J];科學(xué)技術(shù)與工程;2009年16期

,

本文編號:1626527

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1626527.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶43744***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com