利用航空影像和LiDAR點(diǎn)云進(jìn)行建筑物重建的方法研究
本文選題:航空影像 切入點(diǎn):LiDAR點(diǎn)云 出處:《西南交通大學(xué)》2013年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:建筑物信息是數(shù)字城市的重要組成部分,也是智慧城市中的感知數(shù)據(jù),而且還是智慧城市進(jìn)一步對(duì)感知數(shù)據(jù)進(jìn)行融合、分析和處理,與業(yè)務(wù)流程智能化集成,繼而主動(dòng)做出響應(yīng),促進(jìn)城市各個(gè)關(guān)鍵系統(tǒng)和諧高效地運(yùn)行的基礎(chǔ)。然而建筑物不斷發(fā)生變化,由此如何快速高效地獲取建筑物的三維信息引起廣大專(zhuān)家、學(xué)者的關(guān)注。針對(duì)數(shù)字城市中建筑物三維建模所需大量人工干預(yù)、耗費(fèi)大量時(shí)間等問(wèn)題,通過(guò)對(duì)航空影像和機(jī)載LiDAR點(diǎn)云數(shù)據(jù)進(jìn)行建筑物特征提取研究,利用航空影像和機(jī)載LiDAR點(diǎn)云數(shù)據(jù),研究采用區(qū)域增長(zhǎng)、三維Hough變換以及RANSAC算法提取建筑物頂面面片,實(shí)現(xiàn)簡(jiǎn)單建筑物白模構(gòu)建。本文開(kāi)展了如下工作: (1)歸納總結(jié)了影像、LiDAR點(diǎn)云數(shù)據(jù)預(yù)處理過(guò)程。包括:LiDAR點(diǎn)云數(shù)據(jù)的粗差剔除、濾波、分類(lèi),影像正射糾正,以及影像與LiDAR點(diǎn)云數(shù)據(jù)配準(zhǔn)方法。 (2)研究了現(xiàn)有建筑物頂面面片提取方法。分析總結(jié)現(xiàn)有提取建筑物頂面面片方法,主要包括區(qū)域增長(zhǎng)、三維Hough變換以及RANSAC算法。 (3)歸納總結(jié)了基于影像、LiDAR點(diǎn)云數(shù)據(jù)建筑物三維重建的方法。從全自動(dòng)和半自動(dòng)角度進(jìn)行三維建筑物重建方法的歸納分析。總結(jié)了三維建筑物重建過(guò)程中需要注意的地方。 (4)對(duì)實(shí)驗(yàn)區(qū)域的建筑物采用了區(qū)域增長(zhǎng)、三維Hough變換、RANSAC算法進(jìn)行建筑物頂面面片提取實(shí)驗(yàn)。結(jié)合三種方法的特征,分析了三種方法提取面片的效率等問(wèn)題。結(jié)合實(shí)驗(yàn)結(jié)果,對(duì)比分析了三種方法的優(yōu)缺點(diǎn)。 實(shí)驗(yàn)表明:采用DBSCAN聚類(lèi)分析,能夠優(yōu)化建筑物頂面面片提取流程,能夠有效避免頂面面片錯(cuò)分情況;采用RANSAC算法提取建筑物頂面面片較區(qū)域增長(zhǎng)結(jié)果可靠,較三維Hough變換效率高;采用三維Hough變換提取建筑物頂面面片可以獲取較可靠的面片法向量信息,便于進(jìn)行建筑物三維重建;采用影像和LiDAR點(diǎn)云數(shù)據(jù)可以提取建筑物地面輪廓線(xiàn)以及頂面特征線(xiàn),從而實(shí)現(xiàn)建筑物三維重建,但仍需一定的人工干預(yù)。
[Abstract]:Building information is an important part of the digital city, and it is also the perceptual data in the intelligent city, and it is also the intelligent city to further fuse, analyze and process the perceptual data, and integrate with the business process intelligently. Then the foundation of promoting the harmonious and efficient operation of every key system in the city is promoted. However, the buildings are constantly changing, so how to obtain the three-dimensional information of the buildings quickly and efficiently has aroused the majority of experts. Aiming at the problems of large amount of manual intervention and time consuming in 3D modeling of buildings in digital cities, the feature extraction of buildings based on aerial images and airborne LiDAR point cloud data is studied. Using aerial image and airborne LiDAR point cloud data, this paper studies the use of region growth, 3D Hough transform and RANSAC algorithm to extract the top surface of building to realize the construction of simple building white model. The work of this paper is as follows:. 1) the preprocessing process of LiDAR point cloud data is summarized, including gross error elimination, filtering, classification, orthophoto correction, and the registration method between image and LiDAR point cloud data. 2) the existing methods of extracting building top surface are studied, and the existing methods of extracting building top surface are analyzed and summarized, including region growth, 3D Hough transform and RANSAC algorithm. The methods of 3D building reconstruction based on LiDAR point cloud data are summarized. The methods of 3D building reconstruction from automatic and semi-automatic angles are summarized. The points needing attention in the process of 3D building reconstruction are summarized. In this paper, three dimensional Hough transform algorithm is used to extract the top surface of the building. The efficiency of the three methods is analyzed according to the characteristics of the three methods, and the experimental results are combined with the results of the experiment. The advantages and disadvantages of the three methods are compared and analyzed. The experimental results show that the DBSCAN clustering analysis can optimize the extraction process of the top surface of building, and can effectively avoid the fault of the top surface, and the RANSAC algorithm is used to extract the top surface of the building which is more reliable than the regional growth results. The efficiency of 3D Hough transform is higher than that of 3D Hough transform, and the information of normal vector of facet can be obtained by using 3D Hough transform, which is convenient for building 3D reconstruction. Image and LiDAR point cloud data can be used to extract the contour of the ground and the feature line of the top surface of the building, so as to realize the 3D reconstruction of the building, but some artificial intervention is still needed.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:P231;P225
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 楊洋;張永生;張皓;馬一薇;;基于LIDAR數(shù)據(jù)的建筑物自動(dòng)化重建[J];測(cè)繪科學(xué)技術(shù)學(xué)報(bào);2010年02期
2 于亞飛;周愛(ài)武;;一種改進(jìn)的DBSCAN密度算法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2011年02期
3 夏魯寧;荊繼武;;SA-DBSCAN:一種自適應(yīng)基于密度聚類(lèi)算法[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2009年04期
4 王晶;夏魯寧;荊繼武;;一種基于密度最大值的聚類(lèi)算法[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2009年04期
相關(guān)博士學(xué)位論文 前3條
1 曾齊紅;機(jī)載激光雷達(dá)點(diǎn)云數(shù)據(jù)處理與建筑物三維重建[D];上海大學(xué);2009年
2 姚春靜;機(jī)載LiDAR點(diǎn)云數(shù)據(jù)與遙感影像配準(zhǔn)的方法研究[D];武漢大學(xué);2010年
3 張志超;融合機(jī)載與地面LIDAR數(shù)據(jù)的建筑物三維重建研究[D];武漢大學(xué);2010年
相關(guān)碩士學(xué)位論文 前4條
1 龔亮;機(jī)載LiDAR點(diǎn)云數(shù)據(jù)分類(lèi)技術(shù)研究[D];解放軍信息工程大學(xué);2011年
2 殷飛;機(jī)載激光雷達(dá)數(shù)據(jù)濾波方法研究[D];西南交通大學(xué);2010年
3 周哲;基于LIDAR數(shù)據(jù)的DLG生產(chǎn)與質(zhì)量控制技術(shù)研究[D];西南交通大學(xué);2012年
4 劉士程;基于LiDAR數(shù)據(jù)提取建筑物頂面輪廓線(xiàn)方法研究[D];西南交通大學(xué);2012年
,本文編號(hào):1583751
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1583751.html