無人機影像正射糾正與拼接技術的研究與應用
本文關鍵詞: 無人機影像 正射糾正 有理函數(shù)模型 Dijkstra算法 影像拼接 出處:《吉林大學》2017年碩士論文 論文類型:學位論文
【摘要】:近年來,由于人們對快速測繪與高精度測繪的研究與開發(fā)越來越關注,相比較于傳統(tǒng)航天遙感平臺所展現(xiàn)出來的容易受外界環(huán)境的強烈影響,作業(yè)耗時較長,機動性差等不可避免的因素影響,無人機憑借其獨有的高機動靈活性、高效率及低消耗等優(yōu)點,成功成為傳統(tǒng)遙感平臺和常規(guī)航空攝影測量技術的合理代替,同時也受到相關行業(yè)的密切關注和重點研發(fā);尤其在小范圍的高精度定位數(shù)據(jù)和高分影像快速獲取、災害應急響應及危險區(qū)域的空中監(jiān)測等方面具有明顯的優(yōu)勢,開發(fā)針對無人機影像的快速處理算法,面對地理國情普查、國家應急救災及數(shù)字城市建設等方面都具有極為關鍵的優(yōu)勢。在低空無人機遙感影像處理系統(tǒng)中,影像的正射糾正及拼接是無人機遙感影像處理的關鍵。選擇適當?shù)母咝У姆椒▽o人機航攝影像進行正射影像校正及拼接對于實現(xiàn)數(shù)字正射影像的自動化生產(chǎn)具有重要意義。本文的研究重點是無人機影像正射糾正與拼接技術,主要從以下幾個方面進行研究:(1)詳細論述了影像正射糾正的基本原理的處理流程,分析總結了上述原理與方法的優(yōu)缺點及不同條件下的兼容性;(2)分析無人機正射影像拼接方法,主要包括Dijkstra算法、動態(tài)規(guī)劃法拼接線、Twin snake算法鑲嵌線檢測和蟻群算法鑲嵌線等影像拼接算法的原理、作業(yè)流程及優(yōu)缺點;(3)結合長春凈月和德惠同太鄉(xiāng)葦子村工程實例,進行無人機影像正射糾正及拼接的實驗驗證及分析。凈月實驗區(qū)主要由丘陵地區(qū)及居民區(qū)構成,無人機平臺攜載索尼a7r相機攝取兩條航帶、59幅航攝像片航攝影像,攝區(qū)范圍:43°42′01.6488′′N-43°42′08.23824′′N,125°19′14.8314′′E-125°20′17.7738′′E,飛行方向大致為東西走向;德惠市同太鄉(xiāng)葦子村實驗區(qū)地勢平坦,以平原地勢為主,包含部分居民區(qū),無人機平臺攜載索尼ILCE-QX1相機攝取20條航帶、884幅航攝像片,攝區(qū)范圍:經(jīng)緯度為44°23′09.276′′N-44°25′58.8′′N,125°20′46.068′′E-125°25′20.928′′E,飛行方向大致為南北走向。對這兩個實驗區(qū)的無人機影像結合POS數(shù)據(jù)進行空三加密,逐一正射糾正單幅影像,最后拼接生成正射影像圖。在德惠市同太鄉(xiāng)葦子村實驗區(qū)選取100個檢校點對所處理的正射影像進行精度檢驗,得到平面點位中誤差為12.2cm,滿足精度要求;另外,選取局部正射影像與該區(qū)域已有的DLG進行疊加分析驗證正射影像的質量,由此發(fā)現(xiàn),居民區(qū)及平原地區(qū)的正射影像質量最高,丘陵地區(qū)次之。
[Abstract]:In recent years, because people pay more and more attention to the research and development of rapid mapping and high-precision mapping, compared with the traditional space remote sensing platform, it is easy to be strongly affected by the external environment, and the operation time is longer. Due to its unique advantages of high mobility, high efficiency and low consumption, UAV has become a reasonable replacement of traditional remote sensing platform and conventional aerial photogrammetry technology. At the same time, it also receives the close attention and the key research and development of the related industries; Especially in the small range of high-precision positioning data and high-score image rapid acquisition disaster emergency response and aerial monitoring in dangerous areas and other aspects have obvious advantages to develop a rapid processing algorithm for UAV images. Facing the geographical situation survey, the national emergency relief and the digital city construction and so on, all have the extremely vital superiority, in the low altitude unmanned aerial vehicle remote sensing image processing system. The key of UAV remote sensing image processing is to correct and concatenate the orthophoto image of UAV. Selecting proper and efficient method to correct and assemble aerial aerial image of UAV image can realize the automatic production of digital orthophoto image. This paper focuses on orthophoto correction and splicing technology of UAV images. The processing flow of the basic principle of orthophoto correction is discussed in detail, and the advantages and disadvantages of the above principles and methods and the compatibility under different conditions are analyzed and summarized. 2) analyze the orthophoto mosaic method of UAV, including Dijkstra algorithm and dynamic programming method. The principle, operation flow, advantages and disadvantages of the image mosaic algorithms, such as Twin snake algorithm mosaic line detection and ant colony algorithm mosaic line algorithm; Combined with the engineering examples of Jingyue in Changchun and Weizi Village in Tongtai Township of Dehui, the experimental verification and analysis of orthophoto correction and splicing of UAV images are carried out. The experimental area of Jingyue is mainly composed of hilly areas and residential areas. The UAV platform carries a Sony a7r camera to capture 59 aerial photographs of two airstrips. The range of shooting area is: 43 擄42 / 01.6488 / N-43 擄42 / 08.23824 / N. 125 擄19m 14.8314m E-125 擄20 擄17.7738C, the direction of flight is roughly east-west direction; The experimental area of Weizi Village in Tongtai Township of Dehui City is flat, mainly plain terrain, including some residential areas. The UAV platform carries Sony ILCE-QX1 camera to take 884 aerial photographs of 20 flight belts. Area: longitude and latitude: 44 擄23 / 09.276 / N, N-44 擄25N / 58.8N. 125 擄20 擄46.068 擄E-125 擄25 擄20.928 E. The flight direction is approximately north-south direction. The UAV images of the two experimental areas are encrypted with POS data, and one by one orthography is used to correct a single image. At last, the orthophoto map was constructed. 100 calibration points were selected to check the accuracy of the processed orthophoto images in Weizi Village, Tongtai Township, Dehui City, and the median error of plane points was 12.2cm. Meet the precision requirements; In addition, the quality of orthophoto images is verified by superposition analysis between local orthophoto images and existing DLG in this area. It is found that the quality of orthophoto images is the highest in residential areas and plain areas, followed by hilly areas.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P23
【參考文獻】
相關期刊論文 前10條
1 王爽;李炯;王劍;;基于Virtuo-Zo和Geoway的DLG數(shù)據(jù)制作與質量控制研究[J];測繪與空間地理信息;2017年01期
2 張迎燕;田林亞;付五洲;曹奇;劉鋒;;基于神經(jīng)網(wǎng)絡的機載LIDAR高程數(shù)據(jù)系統(tǒng)誤差糾正方法研究[J];勘察科學技術;2015年05期
3 趙博;;淺談像素工廠的空三加密流程[J];測繪與空間地理信息;2014年02期
4 孟淑英;;自動檢測拼接線的無人機視頻影像快速拼接方法[J];測繪通報;2013年05期
5 李新;葛小燕;;基于SIFT的低空遙感圖像拼接[J];制造業(yè)自動化;2013年03期
6 朱愛源;;激光雷達地形測繪遙感技術研究[J];科技創(chuàng)新導報;2012年17期
7 郭華東;;數(shù)字地球:10年發(fā)展與前瞻[J];地球科學進展;2009年09期
8 杜敏;李明會;顏萍;張玉麗;;全數(shù)字攝影測量DEM在生產(chǎn)中的質量控制[J];測繪與空間地理信息;2009年04期
9 袁修孝;劉欣;;基于有理函數(shù)模型的高分辨率衛(wèi)星遙感影像匹配[J];武漢大學學報(信息科學版);2009年06期
10 張瑜;赤娜;胡笑君;;光學雷達大氣折射誤差修正方法研究[J];電光與控制;2009年05期
相關博士學位論文 前1條
1 方賢勇;圖像拼接技術研究[D];浙江大學;2005年
相關碩士學位論文 前9條
1 趙翔;基于無人機航攝DOM生成技術的研究與應用[D];東華理工大學;2015年
2 陳天yN;基于CIPS的低空無人機遙感影像處理研究[D];東華理工大學;2013年
3 劉淑慧;無人機正射影像圖的制作[D];東華理工大學;2013年
4 張文博;無人機航測技術在土地綜合整治中的應用研究[D];長沙理工大學;2013年
5 王利勇;無人機低空遙感數(shù)字影像自動拼接與快速定位技術研究[D];解放軍信息工程大學;2011年
6 袁國體;航空遙感影像正射校正關鍵技術研究[D];河南理工大學;2011年
7 郝思寶;數(shù)字正射影像建庫關鍵技術研究[D];南京師范大學;2007年
8 李曉娟;圖像拼接技術研究[D];西安電子科技大學;2007年
9 張鵬強;線陣CCD遙感衛(wèi)星影像目標精確定位技術研究與實踐[D];中國人民解放軍信息工程大學;2003年
,本文編號:1474639
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1474639.html