北斗高精度基線解算實(shí)驗(yàn)研究
本文關(guān)鍵詞:北斗高精度基線解算實(shí)驗(yàn)研究 出處:《西南交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 北斗衛(wèi)星導(dǎo)航系統(tǒng) 高精度基線解算 對(duì)流層延遲誤差 天線相位中心改正 解算影響因子
【摘要】:我國(guó)北斗二代衛(wèi)星導(dǎo)航系統(tǒng)(BDS)目前已具備了亞太地區(qū)的定位服務(wù)能力。北斗連續(xù)運(yùn)行參考站(continuously operating reference station,CORS)已完成全國(guó)大量的參考站建設(shè),并于2016年5月正式投入運(yùn)行。為了發(fā)揮北斗導(dǎo)航系統(tǒng)的優(yōu)勢(shì)、保證CORS站能夠提供準(zhǔn)確的坐標(biāo)基準(zhǔn)服務(wù),實(shí)現(xiàn)基于北斗數(shù)據(jù)的高精度基線解算將十分關(guān)鍵。然而在GNSS數(shù)據(jù)處理方面,目前國(guó)際上公認(rèn)的兩款高精度解算軟件:GAMIT軟件最新的10.6版本和Bernese軟件最新的5.2版本雖然整合了多個(gè)衛(wèi)星導(dǎo)航系統(tǒng)的代碼,但是均未實(shí)現(xiàn)北斗數(shù)據(jù)解算。因此,高精度北斗數(shù)據(jù)解算將是我們研究的重點(diǎn)。在此背景下,本文研究了 GNSS高精度數(shù)據(jù)處理理論,通過實(shí)測(cè)數(shù)據(jù)實(shí)驗(yàn)分析了數(shù)據(jù)處理過程中主要的誤差因素和影響因子并進(jìn)行優(yōu)化,最終完成北斗高精度基線解算軟件的研制與開發(fā)。本文主要研究?jī)?nèi)容和成果有以下幾個(gè)方面:1、高精度BDS數(shù)據(jù)解算的誤差因素和影響因子實(shí)驗(yàn)分析及優(yōu)化。對(duì)主要的誤差因素:對(duì)流層延遲誤差改正、天線相位中心改正進(jìn)行研究發(fā)現(xiàn)在解算北斗數(shù)據(jù)時(shí)通過使用GPT/GMF模型結(jié)合附加參數(shù)法估計(jì)的相對(duì)對(duì)流層延遲與用Bernese GPS數(shù)據(jù)估計(jì)的對(duì)流層延遲的偏差值有90%優(yōu)于1cm;對(duì)于中長(zhǎng)基線,衛(wèi)星天線相位中心改正不可忽略,最大影響可達(dá)6mm。對(duì)衛(wèi)星截止高度角、不同軌道衛(wèi)星權(quán)比分配、模糊度固定算法三個(gè)影響因子進(jìn)行實(shí)驗(yàn)研究發(fā)現(xiàn):在BDS數(shù)據(jù)解算過程中,對(duì)傾斜地球同步軌道(Inclined GeosynchronousOrbit,IGSO)衛(wèi)星、中地球軌道(Medium Earth Orbit,MEO)衛(wèi)星和地球同步軌道(Geostationary Orbit,GEO)衛(wèi)星進(jìn)行合適的權(quán)比分配,能夠改善BDS解算精度及基線重復(fù)性;在模糊度固定時(shí),短基線使用SIGMA算法模糊度固定率較高,長(zhǎng)基線則使用QIF(Quasi Ionosphere-Free)算法較優(yōu)。2、在西南交通大學(xué)開發(fā)的GPS長(zhǎng)基線數(shù)據(jù)處理軟件(Common GPS Office,CGO)的基礎(chǔ)上重新進(jìn)行了開發(fā),使其具備了北斗系統(tǒng)高精度數(shù)據(jù)處理能力。并根據(jù)BDS數(shù)據(jù)解算影響因子分析所得結(jié)論,在基線解算過程中選擇最優(yōu)的解算參數(shù)。最終解算四川CORS七天的靜態(tài)數(shù)據(jù),以Bernese5.2解算的GPS數(shù)據(jù)結(jié)果作為精確值,對(duì)比兩款軟件解算結(jié)果差值,對(duì)升級(jí)后的CGO軟件解算BDS數(shù)據(jù)的性能進(jìn)行驗(yàn)證。在基線解性能方面,平面方向基線分量差值優(yōu)于7mm,在高程方向上基線分量差值優(yōu)于26mm;網(wǎng)平差性能方面,在平面方向坐標(biāo)分量差值優(yōu)于8mm,在高程方向精度略低,坐標(biāo)分量差值優(yōu)于18mm。
[Abstract]:China's Beidou second Generation Satellite Navigation system (BDS) now has the capability of positioning services in the Asia-Pacific region. Beidou continuous Operation reference Station (. Continuously operating reference station. Corus has completed the construction of a large number of reference stations throughout the country, and officially put into operation in May 2016. In order to give play to the advantages of Beidou navigation system, CORS station can provide accurate coordinate reference services. It is very important to realize the high-precision baseline solution based on Beidou data, however, in the aspect of GNSS data processing. At present, the two internationally recognized high-precision solution software, the latest 10.6 version of the software: Gamit and the latest version 5.2 of the Bernese software, have integrated the codes of several satellite navigation systems. But none of them have realized Beidou data solution. Therefore, high-precision Beidou data solution will be the focus of our research. Under this background, this paper studies the theory of GNSS high-precision data processing. The main error factors and influencing factors in the process of data processing are analyzed and optimized by the experiment of measured data. The final completion of the Beidou high-precision baseline solution software research and development. The main research content and results of the following aspects: 1. Experimental analysis and optimization of error factors and influencing factors for solving high-precision BDS data. Correction of main error factors: tropospheric delay error. The study of antenna phase center correction shows that the relative tropospheric delay estimated by using GPT/GMF model combined with additional parameter method and Bernese is used to calculate Beidou data. The deviation of tropospheric delay estimated by GPS data is better than 90% cm. For the medium-long baseline, the correction of the satellite antenna phase center can not be ignored, and the maximum influence can be up to 6mm. for the satellite cut-off altitude angle, the satellite weight ratio of different orbits can be allocated. The experiment of three influence factors of fixed ambiguity algorithm shows that: in the process of solving BDS data. Inclined Geosynchronous Orbiti (IGSO) satellite. Medium Earth Orbit-MEO) satellite and geostationary Orbit. The BDS accuracy and baseline repeatability can be improved by proper weight ratio allocation. When the ambiguity is fixed, the short baseline uses SIGMA algorithm and the long baseline uses QIF(Quasi Ionosphere-Free algorithm. 2. Based on GPS long baseline data processing software developed by Southwest Jiaotong University, Common GPS Office (CGO) was redeveloped. It has the ability of high precision data processing in Beidou system, and the conclusion is obtained according to the analysis of the influence factors of BDS data. The optimal solution parameters are selected in the course of baseline solution. Finally, the static data of Sichuan CORS for seven days are solved, and the GPS data obtained by Bernese5.2 are taken as the exact value. The difference between the two software solutions is compared to verify the performance of the upgraded CGO software to solve the BDS data. In terms of baseline solution performance, the baseline component difference in plane direction is better than 7 mm. The difference of baseline component in elevation is better than 26mm; In the aspect of network adjustment, the difference of coordinate component in plane direction is better than 8mm, and the accuracy in elevation direction is slightly lower, and the difference value of coordinate component is better than 18mm.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P228.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉超;高井祥;張敬霞;;利用序列平均的高精度GPS基線解算模型[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2012年04期
2 戴吾蛟;謝榮安;余文坤;匡翠林;;不同觀測(cè)環(huán)境基于基線解算的數(shù)據(jù)質(zhì)量分析[J];工程勘察;2012年11期
3 袁林果;黃丁發(fā);丁曉利;鐘萍;;高精度GPS變形監(jiān)測(cè)中基線解算的精度分析[J];工程勘察;2004年02期
4 王超;郭際明;周命端;梅連輝;;高精度GPS數(shù)據(jù)處理中GAMIT批處理方法與實(shí)現(xiàn)[J];測(cè)繪信息與工程;2012年02期
5 宋慶杰;;GPS技術(shù)應(yīng)用與質(zhì)量控制[J];全球定位系統(tǒng);2010年04期
6 謝繼香;張洪銀;童嚴(yán)文;何世豪;;Gamit基線解算結(jié)果分析[J];青?萍;2011年04期
7 劉剛;譚凱;彭懋磊;聶兆生;;用超長(zhǎng)基線解算分析汶川地震動(dòng)態(tài)形變特征[J];大地測(cè)量與地球動(dòng)力學(xué);2011年05期
8 余旭;;基于LGO與CosaGPS處理GPS數(shù)據(jù)方法的探討[J];科技視界;2014年18期
9 王明孝;張之孔;馬懷武;郝恒強(qiáng);;幾種不同的GPS數(shù)據(jù)軟件的對(duì)比[J];全球定位系統(tǒng);2012年01期
10 張萌;丁克良;;GPS基線解算質(zhì)量?jī)?yōu)化方法的研究[J];城市勘測(cè);2012年04期
相關(guān)會(huì)議論文 前6條
1 郭仁安;;靜態(tài)GPS基線解算經(jīng)驗(yàn)之我談[A];華東六省一市測(cè)繪學(xué)會(huì)第十一次學(xué)術(shù)交流會(huì)論文集[C];2009年
2 郭仁安;;淺談靜態(tài)GPS基線解算[A];中國(guó)測(cè)繪學(xué)會(huì)2010年學(xué)術(shù)年會(huì)論文集[C];2010年
3 李彥川;單新建;王振杰;;基于GAMIT的高精度基線解算方法[A];中國(guó)地球物理2013——第二十七專題論文集[C];2013年
4 王超;郭際明;周命端;梅連輝;;基于GAMIT的GPS基線解算批處理方法實(shí)現(xiàn)[A];第二屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
5 楊保敬;賈張明;王華強(qiáng);;GPS基線解算精度與觀測(cè)時(shí)間關(guān)系的探討[A];華東六省一市測(cè)繪學(xué)會(huì)第十一次學(xué)術(shù)交流會(huì)論文集[C];2009年
6 張磊;;應(yīng)用GAMIT/GLOBK軟件進(jìn)行高精度GPS數(shù)據(jù)處理[A];華東六省一市測(cè)繪學(xué)會(huì)第十一次學(xué)術(shù)交流會(huì)論文集[C];2009年
相關(guān)碩士學(xué)位論文 前10條
1 潘紹林;高精度GPS變形監(jiān)測(cè)數(shù)據(jù)處理研究[D];貴州大學(xué);2015年
2 陳健;BDS/GPS高精度基線解算方法研究[D];安徽理工大學(xué);2016年
3 湯逸豪;北斗高精度基線解算實(shí)驗(yàn)研究[D];西南交通大學(xué);2017年
4 王霞迎;BDS/GPS基線解算算法研究[D];中國(guó)測(cè)繪科學(xué)研究院;2014年
5 王延國(guó);GPS/COMPASS組合高精度基線解算方法研究[D];安徽理工大學(xué);2013年
6 元榮;BDS/GPS基線算法研究及軟件開發(fā)[D];清華大學(xué);2014年
7 丁文;基于小波和Kalman濾波的GPS數(shù)據(jù)去噪方法研究[D];東北大學(xué);2009年
8 冉典;GPS/BDS組合基線解算方法研究與軟件實(shí)現(xiàn)[D];安徽理工大學(xué);2015年
9 李金生;GPS網(wǎng)基線解算質(zhì)量控制基準(zhǔn)點(diǎn)可靠性檢驗(yàn)[D];東北大學(xué);2008年
10 黎虎;GPS基線解算與網(wǎng)平差問題的研究與實(shí)踐[D];遼寧工程技術(shù)大學(xué);2013年
,本文編號(hào):1429681
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1429681.html