天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 地質(zhì)論文 >

地質(zhì)信息約束下的河流相儲層地震模式識別應(yīng)用研究

發(fā)布時間:2018-12-08 13:23
【摘要】:渤海海上河流相油田油藏地質(zhì)條件復(fù)雜,儲層厚度薄、橫向變化大、連通性較差,開發(fā)此類油田難度大,面臨多方面的挑戰(zhàn)。傳統(tǒng)的儲層地質(zhì)研究方法已經(jīng)不能滿足當(dāng)前的開發(fā)需求,尤其對小層內(nèi)砂體疊置構(gòu)型研究較少,傳統(tǒng)上主要通過研究地震反射特征來判斷砂體疊置狀況,但是受地震分辨率影響,砂體疊置和地震響應(yīng)之間不存在一一對應(yīng)的關(guān)系,準(zhǔn)確性不高,所以必須考慮使用其它方法對儲層的砂體疊置特征進(jìn)行研究。 本文主要基于地震屬性提取和優(yōu)選,利用神經(jīng)網(wǎng)絡(luò)方法對砂體的疊置特征進(jìn)行了一些研究,首先將渤海海上河流相油田中存在的砂體疊置特征進(jìn)行總結(jié),建立理論正演模型,提取模型地震屬性,使用地震屬性優(yōu)選方法選取敏感屬性,利用神經(jīng)網(wǎng)絡(luò)方法對所有存在的砂體疊置類型進(jìn)行分類,旨在研究實際資料中所有存在的砂體疊置類型,是否能夠通過基于地震屬性的神經(jīng)網(wǎng)絡(luò)模式識別技術(shù)分辨出來,且能夠分辨出幾種類型。最終,研究得出,將工區(qū)中所有的砂體疊置樣式分成了6種模式。 隨后,將在模型研究中取得的成果運用于渤海工區(qū)的實際資料之中,對工區(qū)區(qū)域內(nèi)砂體疊置模式進(jìn)行模式識別預(yù)測,取得了較好的效果,證明了本文提出并運用的對砂體疊置模式研究方案的可行性,對實際資料儲層預(yù)測具有一定指導(dǎo)意義。
[Abstract]:The reservoir geological conditions of fluvial facies oil field in Bohai Sea are complicated, the reservoir thickness is thin, the lateral change is large, the connectivity is poor, the development of this kind of oil field is difficult, and it faces many challenges. The traditional reservoir geological research methods can not meet the current development needs, especially the research on the overlay configuration of sand bodies in the small layers. Traditionally, the study of seismic reflection characteristics is mainly used to judge the overlay situation of sand bodies. However, due to the influence of seismic resolution, there is no one-to-one correspondence between sand body overlay and seismic response, and the accuracy is not high. Therefore, other methods must be considered to study the overlay characteristics of sand body. In this paper, based on seismic attribute extraction and optimal selection, the superposition characteristics of sand bodies are studied by using neural network method. Firstly, the overlay characteristics of sand bodies in river facies oil fields in Bohai Sea are summarized, and the theoretical forward modeling is established. The model seismic attributes are extracted, the sensitive attributes are selected by the seismic attribute optimization method, and all the existing sand overlay types are classified by the neural network method. The purpose of this paper is to study all the sand overlay types in the actual data. Whether the neural network pattern recognition technology based on seismic attributes can be used to distinguish several types. Finally, it is concluded that all the sand overlay patterns in the working area are divided into six models. Then, the results obtained in the model research are applied to the actual data of the Bohai work area, and the pattern recognition and prediction of the sand body superposition pattern in the work area are carried out, and good results are obtained. It is proved that the feasibility of the research scheme of the sand body superposition model proposed and applied in this paper is of certain guiding significance to the reservoir prediction of the actual data.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P618.13

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉憲斌,林金逞,韓春明,穆劍;地震儲層研究的現(xiàn)狀及展望[J];地球?qū)W報;2002年01期

2 Alistalr R.Brown;嚴(yán)又生;;地震屬性及其分類[J];國外油氣勘探;1997年04期

3 井涌泉;余杰;范廷恩;陳開遠(yuǎn);胡光義;;秦皇島32-6油田明化鎮(zhèn)組河流相儲層地球物理參數(shù)影響因素研究[J];地球物理學(xué)進(jìn)展;2012年04期

4 王開燕;徐清彥;張桂芳;程某存;李培海;;地震屬性分析技術(shù)綜述[J];地球物理學(xué)進(jìn)展;2013年02期

5 胡光義;陳飛;范廷恩;孫立春;趙春明;高云峰;王暉;宋來明;;渤海海域S油田新近系明化鎮(zhèn)組河流相復(fù)合砂體疊置樣式分析[J];沉積學(xué)報;2014年03期

6 井涌泉;范洪軍;陳飛;范廷恩;胡光義;陳開遠(yuǎn);;基于波形分類技術(shù)預(yù)測河流相砂體疊置模式[J];地球物理學(xué)進(jìn)展;2014年03期

7 劉江;姚云霞;;綜合利用地震屬性進(jìn)行快速儲層預(yù)測[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2011年07期

8 劉蘭;陳恭洋;周新平;;秦皇島32-6油田4井沉積微相研究[J];海洋地質(zhì)動態(tài);2009年10期

9 高秋菊;姜效典;;地震模型正演技術(shù)在復(fù)雜油氣藏勘探中的應(yīng)用[J];內(nèi)蒙古石油化工;2008年16期

10 胡可云,陸玉昌,石純一;粗糙集理論及其應(yīng)用進(jìn)展[J];清華大學(xué)學(xué)報(自然科學(xué)版);2001年01期



本文編號:2368424

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2368424.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e4127***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com