基于概率統(tǒng)計反演的儲層定量表征方法
[Abstract]:In this paper, the reservoir characterization based on probability statistics and the quantitative evaluation method of uncertainty and reservoir modeling are studied. The research involves inversion of reservoir physical parameters, reservoir lithofacies identification, quantitative evaluation and analysis of uncertainty, and reservoir geostatistical modeling. In view of the problems encountered in reservoir characterization and modeling, some new strategies are proposed in this paper, and the validity of the verification method based on the model data and the actual data is presented. Reservoir physical property information is an important basis for reservoir evaluation, which is usually obtained by inversion of reservoir elastic information through rock physical relations. Because of the complexity of mathematical relation in rock physical model, the inversion objective function usually has strong nonlinearity, which affects the inversion accuracy of reservoir physical parameters. In addition, when the inversion accuracy of elastic parameters is low, it is usually difficult to predict reservoir water saturation information. For this reason, combining Monte Carlo simulation and intelligent optimization algorithm, a large number of random sampling in reservoir physical parameter space is carried out to carry out rock physics forward modeling and elastic parameter contrast analysis to realize sample optimal selection. Gao Si model is used to calculate the posterior probability information of reservoir physical parameters. In view of the difficulty of prediction of water saturation due to the low inversion accuracy of reservoir elastic parameters, the statistical relationship between water saturation and porosity, muddy content of reservoir is analyzed statistically. Based on the inversion results of porosity and muddy content, the information of reservoir water saturation is obtained by using the above statistical relation. The effectiveness of the method is verified by the application of practical area data. Methods based on the inversion of reservoir physical parameters, reservoir lithofacies identification was carried out. In order to solve the problem of uncertainty in predicting reservoir lithofacies distribution information by seismic data, a multi-step inversion method based on probability and statistics is used in this paper. The relationship between the input and output parameters is established in the links of rock physical modeling and log lithofacies definition. The reservoir lithofacies probability is obtained by combining the probabilistic information of each link to characterize the uncertainty of seismic lithofacies identification. In order to reduce the scale of probability matrix, attribute mapping feature constrained inversion parameter space is used to improve the efficiency of the algorithm and reduce the uncertainty of inversion. The entropy function is introduced to quantitatively evaluate and analyze the uncertainty of seismic lithofacies identification. By obtaining the probability and entropy information of lithofacies under the constraint of each link condition information, the transmission law and composition characteristics of uncertainty are quantitatively analyzed. In this paper, the probability of reservoir lithofacies obtained by seismic lithofacies identification is regarded as the constraint information of reservoir lithofacies modeling. Reservoir lithofacies modeling is carried out by using Tau model fusion logging and seismic lithofacies probability information combined with sequential indicator simulation method in geostatistics. By introducing seismic lithofacies probability information into the modeling, the accuracy and stability of reservoir lithofacies modeling results are improved to a certain extent, and the uncertainty of modeling is reduced, which provides important reference information for reservoir fine characterization.
【學位授予單位】:中國石油大學(北京)
【學位級別】:博士
【學位授予年份】:2016
【分類號】:P618.13
【相似文獻】
相關期刊論文 前10條
1 韋博成,王金德;江蘇省概率統(tǒng)計分會學術活動報導[J];應用概率統(tǒng)計;2000年03期
2 徐波;概率統(tǒng)計的教學思考[J];黔西南民族師專學報;2000年03期
3 丁永臻,劉兆君;數(shù)學建模觀與師專概率統(tǒng)計課程教學改革[J];石油教育;2000年Z1期
4 宋禮民;財經(jīng)類《概率統(tǒng)計》教學探析[J];湖北成人教育學院學報;2000年04期
5 吳群英;《概率統(tǒng)計》課程中采用興趣與啟發(fā)式教學[J];廣西高教研究;2001年03期
6 林正炎;概率統(tǒng)計課程改革的若干建議[J];高等數(shù)學研究;2001年01期
7 徐傳勝;概率統(tǒng)計教學改革的實踐與探索[J];臨沂師范學院學報;2002年03期
8 陳慧力;從概率統(tǒng)計的特點看義務教育階段加強概率統(tǒng)計教學的必要性[J];濟南教育學院學報;2003年03期
9 時紅霞;《概率統(tǒng)計》教學中的興趣培養(yǎng)[J];和田師范?茖W校學報;2005年02期
10 陳絢青;對管理系概率統(tǒng)計課程教學的探索[J];科技資訊;2005年24期
相關會議論文 前10條
1 朱德剛;;概率統(tǒng)計課程教學探討[A];江蘇省現(xiàn)場統(tǒng)計研究會第11次學術年會論文集[C];2008年
2 張榮基;張樹美;;提高《概率統(tǒng)計》課程教學質(zhì)量的因素分析[A];2003中國現(xiàn)場統(tǒng)計研究會第十一屆學術年會論文集(上)[C];2003年
3 孔繁亮;張國志;趙輝;趙建中;王銘軍;;對新世紀概率統(tǒng)計系列課程教學內(nèi)容與體系改革的探索與思考——黑龍江省教育十五規(guī)劃課題研究報告[A];高教改革研究與實踐(上冊)——黑龍江省高等教育學會2003年學術年會論文集[C];2003年
4 李英英;;概率統(tǒng)計在經(jīng)濟管理科學中的部分應用[A];中國現(xiàn)場統(tǒng)計研究會第九屆學術年會論文集[C];1999年
5 程龍生;;Г函數(shù)及一類廣義積分公式在概率統(tǒng)計中的應用[A];江蘇省現(xiàn)場統(tǒng)計研究會第八次學術年會論文集[C];2003年
6 邱志平;王曉軍;馬一;;處理不確定問題的新方法——非概率區(qū)間分析模型[A];力學史與方法論論文集[C];2003年
7 羅承忠;于福生;;隨機區(qū)間的落影分布[A];中國系統(tǒng)工程學會模糊數(shù)學與模糊系統(tǒng)委員會第五屆年會論文選集[C];1990年
8 顧紅英;黃國騫;;應用測井資料定量識別單井巖相及沉積微相的方法研究[A];中國地球物理.2003——中國地球物理學會第十九屆年會論文集[C];2003年
9 張允白;;揚子陸塊中奧陶世早期鸚鵡螺多樣性與巖相的關系[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機遇、責任和對策(下冊)[C];2002年
10 劉振峰;郝天珧;戴明剛;;Markov鏈模型在儲層巖相模擬中的應用[A];中國地球物理.2003——中國地球物理學會第十九屆年會論文集[C];2003年
相關重要報紙文章 前2條
1 北京大學數(shù)學科學學院;統(tǒng)計學一代宗師———許寶,
本文編號:2305553
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2305553.html