天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 地質(zhì)論文 >

赤峰紅山子巖體斑狀黑云母堿長花崗巖年代學及地球化學特征

發(fā)布時間:2018-08-16 15:55
【摘要】:紅山子巖體位于西拉木倫河斷裂以南和赤峰—開源斷裂帶以北的遼源地塊,巖性主要為堿長花崗巖,屬沽源—紅山子火山巖鈾成礦帶重要的組成部分。呈北東向展布于紅山子火山塌陷盆地東南部,面積約為290km2。本人在收集整理前人研究成果的基礎上,選擇以紅山子巖體斑狀黑云母堿長花崗巖為研究對象,利用LA-ICP-MS鋯石U-Pb同位素定年,確定堿長花崗巖的形成年代;通過巖石學、巖石地球化學分析;結合已有的地質(zhì)資料及相關地質(zhì)背景,討論斑狀黑云母堿長花崗巖的成因、物源;根據(jù)區(qū)內(nèi)A型花崗巖的年代學推測蒙古—鄂霍次克海的閉合時間。斑狀黑云母堿長花崗巖LA-ICP-MS鋯石U-Pb同位素定年的206Pb/238U年齡為151.4Ma±1.1Ma(MSWD=0.57),為晚侏羅世,與區(qū)域內(nèi)晚侏羅世新民組的流紋巖屬同時代巖漿活動的產(chǎn)物。巖石地球化學數(shù)據(jù)顯示,斑狀黑云母堿長花崗巖高硅(SiO2=74.26~74.94%)、富堿(ALK=8.74~9.11%)、富鉀(K2O/Na2O=1.29~1.35),屬高鉀鈣堿性系列;具有較低的FeOT/MgO(12.27~14.66%,平均為13.03%)、貧鋁(12.42~12.66%,平均為12.57%),A/CNK=0.93~0.96,貧鎂(0.16~0.19%,平均為0.18%)、貧磷(P2O5=0.02~0.03%,平均為0.02%)、高分異(DI=92.33~92.94)等特征。稀土元素總量(不含Y)較高,輕稀土元素明顯富集,輕重稀土元素分餾明顯,呈明顯“右傾”,具有強烈的Eu負異常。微量元素特征顯示斑狀黑云母堿長花崗巖富集高場強元素Th、U、Zr、Hf等,虧損Ta、Nb、P等高場強元素;富集大離子親石元素Rb、K及輕稀土元素La、Ce,虧損Ba、Sr等大離子親石元素,為低Ba-Sr花崗巖。紅山子巖體斑狀黑云母堿長花崗巖10000Ga/Al=3.27~3.96,平均為3.54(大于2.6),Zr+Nb+Ce+Y含量為512.6×10-6~642.9×10-6,平均為562.1×10-6,大于350×10-6;在Nb vs 10000Ga/Al、Zr vs 10000Ga/Al、(K2O+Na2O)/Ca vs 10000Ga/Al、(K2O+Na2O)/CaO vs Zr+Nb+Ce+Y、FeOT/MgO vs Zr+Nb+Ce+Y圖解中,投入A型花崗巖區(qū)域內(nèi),且鋯石飽和溫度為814℃~837℃,為A型花崗巖。斑狀黑云母堿長花崗巖具有較高的Rb/Sr=17.56~19.90(0.5),較低的Ti/Y=10.40~11.60,Ti/Zr=2.14~2.77(20)。Nb/Ta=12.58~12.94,平均為12.76;低的Mg#(平均12.23)及低Cr(平均2.33×10-6)、Ni(平均0.60×10-6)、Co(平均0.57×10-6)、V(平均5.74×10-6)。紅山子巖體斑狀黑云母堿長花崗巖主要是來自富集地幔的巖漿底侵,導致中上地殼在部分熔融過程中混染而成。在主量元素構造判別圖MgO-FeOT圖解中,斑狀黑云母堿長花崗巖落入POG區(qū)域邊緣,在SiO2-Al2O3、FeOT+MgO-CaO及FeOT/(FeOT+MgO)-SiO2圖解中,落入POG范圍內(nèi);在R1-R2圖解中,樣品落入后造山伸展拉張環(huán)境范圍內(nèi);在Lg[CaO/(K2O+Na2O)]-SiO2圖解中,落入伸展拉張環(huán)境中。在微量元素構造環(huán)境判別圖Y+Nb-Rb和Y-Nb圖解中,樣品點落于板內(nèi)(WPG)范圍內(nèi)。以上結果表明斑狀黑云母堿長花崗巖產(chǎn)于伸展拉張環(huán)境中;谄鋾r空因素,斑狀黑云母堿長花崗巖的形成可能與北部的蒙古—鄂霍次克?p合帶存在密切的關系。大興安嶺南段出露廣泛的晚侏羅世A型花崗巖(流紋巖),表明晚侏羅世已進入伸展拉張環(huán)境,因此蒙古—鄂霍次克海應于晚侏羅世之前閉合。
[Abstract]:The Hongshanzi pluton is located in the Liaoyuan block south of the Xilamulun River fault and north of the Chifeng-Kaiyuan fault zone. Its lithology is mainly alkali-feldspar granite, which is an important part of the Guyuan-Hongshanzi volcanic rock uranium metallogenic belt. It is distributed in the southeastern part of the Hongshanzi volcanic subsidence basin with an area of about 290km 2. On the basis of the research results, the porphyry biotite alkali-feldspar granite of Hongshanzi intrusion is selected as the research object, and the formation age of alkali-feldspar granite is determined by LA-ICP-MS zircon U-Pb isotope dating; the petrology and geochemical analysis are carried out; the porphyry biotite alkali-feldspar granite is discussed in combination with the existing geological data and related geological background. The 206Pb/238U age of porphyritic biotite alkali-feldspar granite LA-ICP-MS zircon U-Pb isotope dating is 151.4Ma (+1.1Ma) (MSWD=0.57), which is a Late Jurassic rhyolite belonging to the Late Jurassic Xinmin Formation. Petrogeochemical data show that porphyry biotite alkali-feldspar granites are high in silicon (SiO2 = 74.26-74.94%), rich in alkali (ALK = 8.74-9.11%) and rich in potassium (K2O/Na2O = 1.29-1.35), belonging to the high potassium-calc-alkaline series; have low FeOT/MgO (12.27-14.66%, average 13.03%) and poor in aluminum (12.42-12.66%, average 12.57%), A/CNK = 0.93-0.96, poor in magnesium (0.16-0.19%, average). They are all 0.18%, poor in phosphorus (P2O5 = 0.02-0.03%, average 0.02%) and highly differentiated (DI = 92.33-92.94). The total amount of REEs (excluding Y) is high, the light and heavy REEs are obviously enriched, the fractionation of light and heavy REEs is obvious, and the fractionation of light and heavy REEs is obvious, showing a "right-dip" and a strong negative Eu anomaly. The elements Th, U, Zr, Hf and so on are deficient in high field strength elements such as Ta, Nb and P, enriched in large ion lithophilic elements Rb, K and light rare earth elements La, Ce, deficient Ba, Sr and other large ion lithophilic elements such as low Ba-Sr granite, Hongshanzi porphyry biotite alkali-feldspar granite 10 000 Ga/Al = 3.27-3.96, with an average content of 3.54 (more than 2.6), and Zr+Nb+Ce+Y content of 512.6 *10-6-642.9 *10-6, respectively. The average value is 562.1 x 10-6, greater than 350 x 10-6, larger than 350 x 10-6; in Nb vs 10000 Ga/Al, Zr vs 10000 Ga/Al, (K2O + Na2O) / Ca vs 10000 Ga/Al, (K2O + Na2O) / CaO vs Zr + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, feOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, the input A type grangranite area, and the saturation temperature of zircis 814 ~834 ~837 (-A type grangrangrangranite type granite-alk-alk-type = 1 7.56-19.90 (0.5), low Ti/Y = 10.40-11.60, Ti/Zr = 2.14-2.77 (20).Nb/Ta = 12.58-12.94, average 12.76; low Mg\# (average 12.23) and low Cr (average 2.33 x 10-6), Ni (average 0.60 x 10-6), Ni (average 0.60 x 10-6, Co (average 0.57 x 10-10-6), Co (average 0.57 x 0.57 x 10-10-6, V (average 5.74 x 10-10-6). Hong-sorbitbitite porphyphyphyry biotbiotbiotbiotbiotbiotbiotite alk-granite-alk-fegranite granite-granite-granite-granite-granite-alk-granite-In the meantime, it is necessary to study the relationship between the two. In the MgO-FeOT diagram, biotite alkali-feldspar porphyry granite falls into the edge of POG region, and falls into the POG range in SiO2-Al2O3, FeOT+MgO-CaO and FeOT/(FeOT+MgO) -SiO2 diagrams. In Lg [CaO/(K2O+Na2O)]-SiO2 diagrams, the samples fall into extensional environments. In Y+Nb-Rb and Y-Nb diagrams of trace element tectonic environments, the samples fall within the range of intraplate (WPG). The above results show that porphyry biotite alkali-feldspar granites occur in extensional environments. Based on their spatiotemporal factors, porphyry biotite alkali-feldspar granites are formed. There may be a close relationship with the Mongolia-Okhotsk Sea suture zone in the north. The extensive occurrence of Late Jurassic A-type granites (rhyolite) in the southern section of the Great Hinggan Mountains indicates that the Late Jurassic has entered an extensional environment, so the Mongolia-Okhotsk Sea should be closed before the Late Jurassic.
【學位授予單位】:東華理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P597.3;P588.121

【相似文獻】

相關期刊論文 前10條

1 王勇;呂慶田;孟貴祥;嚴加永;楊岳清;趙金花;;內(nèi)蒙東七一山堿長花崗巖及其成礦作用[J];地質(zhì)學報;2009年10期

2 呂博;楊岳清;孟貴祥;嚴加永;趙金花;王守光;賈玲瓏;彭潤民;;內(nèi)蒙古東七一山堿長花崗巖的地球化學特征和成因[J];巖石礦物學雜志;2011年03期

3 王艷麗;祝新友;劉志剛;傅其斌;;廣西栗木鎢錫稀有金屬礦床堿長花崗巖的厘定[J];華南地質(zhì)與礦產(chǎn);2013年01期

4 周瑞文;鉀長-堿長花崗巖與稀土鈮鉭成礦的關系[J];地質(zhì)與勘探;1982年12期

5 廖世勇;尹福光;王冬兵;唐淵;孫志明;孫潔;;滇西“三江”地區(qū)臨滄花崗巖基中三疊世堿長花崗巖的發(fā)現(xiàn)及其意義[J];巖石礦物學雜志;2014年01期

6 祝新友;王京彬;王艷麗;程細音;何鵬;傅其斌;李順庭;;南嶺錫鎢多金屬礦區(qū)堿長花崗巖的厘定及其意義[J];中國地質(zhì);2012年02期

7 傅其斌;祝新友;程細音;趙晶晶;王艷麗;;云南個舊卡房錫-銅礦床堿長花崗巖厘定及意義[J];礦物學報;2013年01期

8 章錦統(tǒng),夏衛(wèi)華;黃玉堿長花崗巖及其礦床[J];地質(zhì)科技情報;1988年04期

9 徐啟東;;湖南香花嶺復式堿長花崗巖體侵入期次關系的識別[J];湖南地質(zhì);1991年04期

10 曹希榮;王子英;林樹華;;小黑山地區(qū)堿長花崗巖構造環(huán)境探討[J];科技信息;2013年25期

相關會議論文 前1條

1 黃明;和靜;石艷嬌;劉成;;內(nèi)蒙古哈達營子侏羅紀晚期堿長花崗巖的地質(zhì)特征[A];科技創(chuàng)新與經(jīng)濟結構調(diào)整——第七屆內(nèi)蒙古自治區(qū)自然科學學術年會優(yōu)秀論文集[C];2012年

相關碩士學位論文 前3條

1 周毅;內(nèi)蒙古西烏珠穆沁旗罕烏拉地區(qū)早二疊紀巖漿巖年代學及地球化學特征研究[D];吉林大學;2016年

2 劉斐耀;赤峰紅山子巖體斑狀黑云母堿長花崗巖年代學及地球化學特征[D];東華理工大學;2017年

3 田德欣;內(nèi)蒙古東烏旗地區(qū)晶洞堿長花崗巖的成因及其地質(zhì)意義[D];吉林大學;2015年

,

本文編號:2186456

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2186456.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶361ff***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com