赤峰紅山子巖體斑狀黑云母堿長花崗巖年代學及地球化學特征
[Abstract]:The Hongshanzi pluton is located in the Liaoyuan block south of the Xilamulun River fault and north of the Chifeng-Kaiyuan fault zone. Its lithology is mainly alkali-feldspar granite, which is an important part of the Guyuan-Hongshanzi volcanic rock uranium metallogenic belt. It is distributed in the southeastern part of the Hongshanzi volcanic subsidence basin with an area of about 290km 2. On the basis of the research results, the porphyry biotite alkali-feldspar granite of Hongshanzi intrusion is selected as the research object, and the formation age of alkali-feldspar granite is determined by LA-ICP-MS zircon U-Pb isotope dating; the petrology and geochemical analysis are carried out; the porphyry biotite alkali-feldspar granite is discussed in combination with the existing geological data and related geological background. The 206Pb/238U age of porphyritic biotite alkali-feldspar granite LA-ICP-MS zircon U-Pb isotope dating is 151.4Ma (+1.1Ma) (MSWD=0.57), which is a Late Jurassic rhyolite belonging to the Late Jurassic Xinmin Formation. Petrogeochemical data show that porphyry biotite alkali-feldspar granites are high in silicon (SiO2 = 74.26-74.94%), rich in alkali (ALK = 8.74-9.11%) and rich in potassium (K2O/Na2O = 1.29-1.35), belonging to the high potassium-calc-alkaline series; have low FeOT/MgO (12.27-14.66%, average 13.03%) and poor in aluminum (12.42-12.66%, average 12.57%), A/CNK = 0.93-0.96, poor in magnesium (0.16-0.19%, average). They are all 0.18%, poor in phosphorus (P2O5 = 0.02-0.03%, average 0.02%) and highly differentiated (DI = 92.33-92.94). The total amount of REEs (excluding Y) is high, the light and heavy REEs are obviously enriched, the fractionation of light and heavy REEs is obvious, and the fractionation of light and heavy REEs is obvious, showing a "right-dip" and a strong negative Eu anomaly. The elements Th, U, Zr, Hf and so on are deficient in high field strength elements such as Ta, Nb and P, enriched in large ion lithophilic elements Rb, K and light rare earth elements La, Ce, deficient Ba, Sr and other large ion lithophilic elements such as low Ba-Sr granite, Hongshanzi porphyry biotite alkali-feldspar granite 10 000 Ga/Al = 3.27-3.96, with an average content of 3.54 (more than 2.6), and Zr+Nb+Ce+Y content of 512.6 *10-6-642.9 *10-6, respectively. The average value is 562.1 x 10-6, greater than 350 x 10-6, larger than 350 x 10-6; in Nb vs 10000 Ga/Al, Zr vs 10000 Ga/Al, (K2O + Na2O) / Ca vs 10000 Ga/Al, (K2O + Na2O) / CaO vs Zr + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, feOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, the input A type grangranite area, and the saturation temperature of zircis 814 ~834 ~837 (-A type grangrangrangranite type granite-alk-alk-type = 1 7.56-19.90 (0.5), low Ti/Y = 10.40-11.60, Ti/Zr = 2.14-2.77 (20).Nb/Ta = 12.58-12.94, average 12.76; low Mg\# (average 12.23) and low Cr (average 2.33 x 10-6), Ni (average 0.60 x 10-6), Ni (average 0.60 x 10-6, Co (average 0.57 x 10-10-6), Co (average 0.57 x 0.57 x 10-10-6, V (average 5.74 x 10-10-6). Hong-sorbitbitite porphyphyphyry biotbiotbiotbiotbiotbiotbiotite alk-granite-alk-fegranite granite-granite-granite-granite-granite-alk-granite-In the meantime, it is necessary to study the relationship between the two. In the MgO-FeOT diagram, biotite alkali-feldspar porphyry granite falls into the edge of POG region, and falls into the POG range in SiO2-Al2O3, FeOT+MgO-CaO and FeOT/(FeOT+MgO) -SiO2 diagrams. In Lg [CaO/(K2O+Na2O)]-SiO2 diagrams, the samples fall into extensional environments. In Y+Nb-Rb and Y-Nb diagrams of trace element tectonic environments, the samples fall within the range of intraplate (WPG). The above results show that porphyry biotite alkali-feldspar granites occur in extensional environments. Based on their spatiotemporal factors, porphyry biotite alkali-feldspar granites are formed. There may be a close relationship with the Mongolia-Okhotsk Sea suture zone in the north. The extensive occurrence of Late Jurassic A-type granites (rhyolite) in the southern section of the Great Hinggan Mountains indicates that the Late Jurassic has entered an extensional environment, so the Mongolia-Okhotsk Sea should be closed before the Late Jurassic.
【學位授予單位】:東華理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P597.3;P588.121
【相似文獻】
相關期刊論文 前10條
1 王勇;呂慶田;孟貴祥;嚴加永;楊岳清;趙金花;;內(nèi)蒙東七一山堿長花崗巖及其成礦作用[J];地質(zhì)學報;2009年10期
2 呂博;楊岳清;孟貴祥;嚴加永;趙金花;王守光;賈玲瓏;彭潤民;;內(nèi)蒙古東七一山堿長花崗巖的地球化學特征和成因[J];巖石礦物學雜志;2011年03期
3 王艷麗;祝新友;劉志剛;傅其斌;;廣西栗木鎢錫稀有金屬礦床堿長花崗巖的厘定[J];華南地質(zhì)與礦產(chǎn);2013年01期
4 周瑞文;鉀長-堿長花崗巖與稀土鈮鉭成礦的關系[J];地質(zhì)與勘探;1982年12期
5 廖世勇;尹福光;王冬兵;唐淵;孫志明;孫潔;;滇西“三江”地區(qū)臨滄花崗巖基中三疊世堿長花崗巖的發(fā)現(xiàn)及其意義[J];巖石礦物學雜志;2014年01期
6 祝新友;王京彬;王艷麗;程細音;何鵬;傅其斌;李順庭;;南嶺錫鎢多金屬礦區(qū)堿長花崗巖的厘定及其意義[J];中國地質(zhì);2012年02期
7 傅其斌;祝新友;程細音;趙晶晶;王艷麗;;云南個舊卡房錫-銅礦床堿長花崗巖厘定及意義[J];礦物學報;2013年01期
8 章錦統(tǒng),夏衛(wèi)華;黃玉堿長花崗巖及其礦床[J];地質(zhì)科技情報;1988年04期
9 徐啟東;;湖南香花嶺復式堿長花崗巖體侵入期次關系的識別[J];湖南地質(zhì);1991年04期
10 曹希榮;王子英;林樹華;;小黑山地區(qū)堿長花崗巖構造環(huán)境探討[J];科技信息;2013年25期
相關會議論文 前1條
1 黃明;和靜;石艷嬌;劉成;;內(nèi)蒙古哈達營子侏羅紀晚期堿長花崗巖的地質(zhì)特征[A];科技創(chuàng)新與經(jīng)濟結構調(diào)整——第七屆內(nèi)蒙古自治區(qū)自然科學學術年會優(yōu)秀論文集[C];2012年
相關碩士學位論文 前3條
1 周毅;內(nèi)蒙古西烏珠穆沁旗罕烏拉地區(qū)早二疊紀巖漿巖年代學及地球化學特征研究[D];吉林大學;2016年
2 劉斐耀;赤峰紅山子巖體斑狀黑云母堿長花崗巖年代學及地球化學特征[D];東華理工大學;2017年
3 田德欣;內(nèi)蒙古東烏旗地區(qū)晶洞堿長花崗巖的成因及其地質(zhì)意義[D];吉林大學;2015年
,本文編號:2186456
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2186456.html