海上斜井地震資料采集方式設(shè)計及應用研究
本文選題:觀測系統(tǒng)設(shè)計 + 正演模擬; 參考:《長安大學》2017年碩士論文
【摘要】:我國絕大多數(shù)地區(qū)地質(zhì)條件較為復雜,石油和天然氣的勘探水平較低,儲采比遠遠低于世界平均水平的40:1。陸上的油氣勘探已進入中后期,海上油氣田勘探開發(fā)將成為以后油氣田的主戰(zhàn)場。井間地震是在井中激發(fā),井中接收,從而可以獲得較高分辨率的地震信號,它是測井數(shù)據(jù)與地面地震勘探之間的橋梁。由于井間地震技術(shù)采集方式的特殊性,在現(xiàn)如今儀器裝備的基礎(chǔ)上,如何能在有限的財力、人力、物力的情況下,通過合理的設(shè)置炮點和檢波點的排列次序,以此來獲得更好的地震數(shù)據(jù)顯得尤為重要。在實際采集工作中,它所獲得井間地震波場比較豐富,需要建立合理的處理流程,壓制干擾波而突出有效波,從而為后期的綜合解釋提供強有力的保障。本文深入研究了海上斜井井間地震的觀測系統(tǒng)采集設(shè)計,主要分析和論述斜八字井型、雙左拐井型、雙右拐井型的平層、斜層(上傾、下傾)的觀測系統(tǒng)設(shè)計,主要概述了上行波(P波、S波)和上行波(P波、S波)、下行波(P波、S波)時需要設(shè)計的觀測系統(tǒng)。重點分析和討論了平層和斜層(上傾、下傾)所需要的觀測系統(tǒng)的不同之處以及對比了國際地球物理知名公司斯倫貝謝公司的采集方式設(shè)計。最后討論了復雜地層情況下的理論資料的觀測系統(tǒng)設(shè)計與成像方法。在這些方法技術(shù)的指導下,針對甘肅某地區(qū)實際斜井井間地震資料,進行觀測系統(tǒng)設(shè)計和實際相關(guān)資料處理,最后結(jié)合井區(qū)鉆井地質(zhì)資料、測井資料等數(shù)據(jù),完成了該井區(qū)地震儲層構(gòu)造與裂縫發(fā)育的綜合解釋和儲層反演。研究結(jié)果表明設(shè)計完成斜層的觀測系統(tǒng)要比平層的觀測系統(tǒng)難度大。復雜地層情況的觀測系統(tǒng)要比常規(guī)地層情況的觀測系統(tǒng)難度大。同時成P波(上行和下行)、S波(上行和下行)的像的觀測系統(tǒng)要比同時成上行P波、上行S波需要更多的炮點和檢波點。在相同井型和地層條件下,國際地球物理知名公司斯倫貝謝公司的采集方式和本論文所采取的設(shè)計方式相比較而言各有特色。最后通過理論資料和實際資料的驗證,設(shè)計的觀測系統(tǒng)能夠達到預期的目的。
[Abstract]:The geological conditions in most areas of China are relatively complex, the exploration level of oil and gas is low, and the ratio of reservoir to production is far lower than the world average of 40: 1. The onshore oil and gas exploration has entered the middle and late stage, the offshore oil and gas field exploration and development will become the main battlefield of the oil and gas field in the future. Cross-well seismicity is a bridge between logging data and surface seismic exploration, which is excited in the well and received in the well, so that the seismic signal with high resolution can be obtained. Because of the particularity of cross-well seismic acquisition method, on the basis of today's instrument and equipment, how can we arrange the sequence of gun points and detection points reasonably under the condition of limited financial, manpower and material resources? It is particularly important to obtain better seismic data. In the actual acquisition work, the cross-well seismic wave field obtained by it is quite abundant, so it is necessary to set up a reasonable processing flow, suppress the interference wave and outshine the effective wave, thus providing a strong guarantee for the comprehensive interpretation in the later stage. In this paper, the acquisition system design of cross-well seismic observation system for offshore inclined wells is deeply studied, and the design of observation system for inclined eight well type, double left corner well type, double right turning well type, oblique layer (updip, downdip) is analyzed and discussed. In this paper, the observation system of uplink wave (P wave S wave), uplink wave (P wave S wave) and downlink wave (P wave S wave) is introduced. The differences between the observational systems needed for the flat layer and the oblique layer (updip, downdip) are analyzed and discussed in detail, and the acquisition mode design of Schlumberger is compared with that of Schlumberger, a well-known international geophysical company. Finally, the design of observation system and imaging method of theoretical data in complex strata are discussed. Under the guidance of these methods and techniques, aiming at the actual cross-well seismic data in a certain area of Gansu Province, the design of the observation system and the processing of the actual relevant data are carried out. Finally, the data of drilling geological data and logging data in the well area are combined. The comprehensive interpretation and reservoir inversion of seismic reservoir structure and fracture development in this well area have been completed. The results show that it is more difficult to design and complete the observation system of the oblique layer than that of the flat layer. The observation system of complex strata is more difficult than that of conventional strata. The observation system of the image of S wave (uplink and downlink) at the same time is more important than that of the uplink P wave, which requires more shooting points and detection points. Under the same wellbore and formation conditions, the collection methods of Schlumberger, an international geophysical company, have their own characteristics compared with the design methods adopted in this paper. Finally, through the theoretical and practical data verification, the designed observation system can achieve the desired purpose.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P631.4
【參考文獻】
相關(guān)期刊論文 前10條
1 李緒宣;朱振宇;張金淼;;中國海油地震勘探技術(shù)進展與發(fā)展方向[J];中國海上油氣;2016年01期
2 張樹林;張懿;;海上多波多分量地震勘探技術(shù)現(xiàn)狀及應用展望[J];海洋地質(zhì)前沿;2014年11期
3 馮玉蘋;刁瑞;徐維秀;楊晶;宋建國;;井間地震縱橫波分離方法研究及應用[J];巖性油氣藏;2013年05期
4 孫淵;黃琴;溫柔;李小偉;秦民君;劉東明;;井間時移地震屬性在水驅(qū)前緣監(jiān)測中的應用研究[J];石油儀器;2013年02期
5 范曉文;馬向軍;程峰;熊齊國;畢月欣;;井間地震各類震源特征分析[J];石油儀器;2012年06期
6 陳瑜;李緒宣;孫淵;范廷恩;;斜井井間反射波逆時偏移成像技術(shù)及應用效果初探[J];地質(zhì)科技情報;2012年04期
7 李桂花;朱光明;馬德堂;;井間地震數(shù)據(jù)處理方法——以大慶某采油廠井間地震勘探為例[J];石油地球物理勘探;2011年01期
8 段寶平;何正勤;葉太蘭;;井間地震技術(shù)的研究現(xiàn)狀及其工程應用前景[J];物探與化探;2010年05期
9 張進鐸;;國外井間地震技術(shù)的最新發(fā)展動態(tài)[J];內(nèi)蒙古石油化工;2009年01期
10 毛中華;牟來勇;劉美麗;吳忠;;墾71井區(qū)井間地震數(shù)據(jù)采集方法[J];石油地球物理勘探;2008年S2期
相關(guān)博士學位論文 前1條
1 馬靈;海上地震數(shù)據(jù)多纜采集與記錄系統(tǒng)設(shè)計研究[D];中國科學技術(shù)大學;2012年
相關(guān)碩士學位論文 前7條
1 文博;井間地震資料二維波場去噪處理方法技術(shù)研究[D];長安大學;2012年
2 俞岱;井中地震吸收參數(shù)提取及應用研究[D];長安大學;2011年
3 鄧偉;斜井井間地震傾斜界面常規(guī)成像方法技術(shù)研究[D];長安大學;2011年
4 周小榮;井中地震成像及多參數(shù)綜合應用研究[D];長安大學;2011年
5 景月紅;地震初至波走時層析成像與近地表速度建模[D];長安大學;2009年
6 王東燕;地震約束波阻抗反演及應用研究[D];長安大學;2006年
7 張文起;地震反演在儲層預測中的應用[D];中國地質(zhì)大學(北京);2005年
,本文編號:2071011
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2071011.html