邊坡巖體力學(xué)參數(shù)的確定研究
本文選題:節(jié)理巖體邊坡 + 力學(xué)參數(shù) ; 參考:《重慶交通大學(xué)》2017年碩士論文
【摘要】:巖體力學(xué)參數(shù)取值之所以復(fù)雜且長(zhǎng)期來(lái)成為許多學(xué)者的研究重點(diǎn),因?yàn)閹r體的內(nèi)部發(fā)育了眾多不同層次的結(jié)構(gòu)面。眾多不同層次結(jié)構(gòu)面的存在,導(dǎo)致巖體宏觀力學(xué)參數(shù)展現(xiàn)出不均勻性、各向異性和尺寸效應(yīng)等特征。巖體力學(xué)參數(shù)的合理取值是邊坡分析中的根本前提,也是邊坡治理實(shí)際運(yùn)用中十分關(guān)鍵的一點(diǎn),直接體現(xiàn)在邊坡工程的經(jīng)濟(jì)性和安全性。本文進(jìn)行的研究?jī)?nèi)容主要包含以下幾方面:(1)對(duì)邊坡巖體質(zhì)量系統(tǒng)CSMR分級(jí)進(jìn)行分析,對(duì)主要的定量化參數(shù)巖石質(zhì)量指標(biāo)(RQD),不連續(xù)面間距,結(jié)構(gòu)面方向F1,F2及F3,巖塊強(qiáng)度,通過(guò)線性擬合得到連續(xù)函數(shù),代替原來(lái)的離散函數(shù)的取值,細(xì)化了評(píng)分區(qū)間與對(duì)應(yīng)的權(quán)值分配,降低了參數(shù)范圍選擇的人為因素影響。(2)對(duì)邊坡巖體的節(jié)理裂隙進(jìn)行統(tǒng)計(jì),按照Monte-Carlo原理,生成巖體結(jié)構(gòu)面裂隙網(wǎng)絡(luò)的隨機(jī)分布模型。分析了用選取特征跡長(zhǎng)的方法確定數(shù)值分析模型的合理性,并得到表征單元體尺寸。(3)按照分形理論,邊坡整體與局部分形維數(shù)相同,坡面上任意面積所對(duì)應(yīng)特征跡長(zhǎng)值與該邊坡的特征跡長(zhǎng)值有自相似的關(guān)系,分析了從小試件確定邊坡力學(xué)性質(zhì)的可能性。并且當(dāng)分形維數(shù)相同時(shí),不同尺寸節(jié)理巖體與特征跡長(zhǎng)存在比例關(guān)系,得到不同尺寸節(jié)理巖體所對(duì)應(yīng)的特征跡長(zhǎng),確定了節(jié)理裂隙統(tǒng)計(jì)的尺度與范圍。(4)分析了邊坡高度與表征單元體REV的關(guān)系,發(fā)現(xiàn)坡高對(duì)巖體強(qiáng)度存在弱化效應(yīng),并得到邊坡高度與表征單元體特征跡長(zhǎng)關(guān)系H=17.1R。提出了考慮坡高影響用小試件巖石強(qiáng)度結(jié)合表征單元體特征跡長(zhǎng)估算巖體強(qiáng)度的方法。(5)結(jié)合工程實(shí)例采用細(xì)化的CSMR評(píng)分法,數(shù)值模擬試驗(yàn)方法、特征跡長(zhǎng)法、宏細(xì)觀損傷力學(xué)方法獲得的巖體力學(xué)參數(shù)值,并進(jìn)行了對(duì)比驗(yàn)證。
[Abstract]:The reason why the mechanical parameters of rock mass is complex and has been the focus of many scholars for a long time, because of the development of many different levels of structural planes in the internal rock mass. Because of the existence of many different structural planes, the macroscopic mechanical parameters of rock mass show inhomogeneity, anisotropy and size effect. The reasonable value of rock mass mechanical parameters is the basic premise of slope analysis and the key point in the practical application of slope treatment. It is directly reflected in the economy and safety of slope engineering. The research contents of this paper mainly include the following aspects: 1) the analysis of the slope rock mass quality system CSMR classification, the main quantitative parameter rock quality index, discontinuous plane spacing, structural plane direction F _ 1F _ 2 and F _ 3, the rock mass strength, the main quantitative parameter rock quality index, the discontinuous plane spacing, the structure plane direction F _ 1F _ 2 and F _ 3, the rock mass strength, By linear fitting, the continuous function is obtained, instead of the original discrete function, the distribution of the scoring interval and the corresponding weight is refined, and the influence of artificial factors on the selection of the parameter range is reduced. According to Monte-Carlo principle, the random distribution model of fracture network of rock mass structural plane is generated. The rationality of determining the numerical analysis model by the method of selecting characteristic trace length is analyzed, and it is obtained that the fractal dimension of the whole slope is the same as the local fractal dimension according to the fractal theory. There is a self-similar relationship between the characteristic trace length corresponding to any area on the slope and the characteristic trace length of the slope. The possibility of determining the mechanical properties of the slope by small specimen is analyzed. When the fractal dimension is the same, there is a proportional relationship between the jointed rock mass with different dimensions and the characteristic trace length, and the characteristic trace length of the jointed rock mass with different dimensions is obtained. The relationship between slope height and REV is analyzed. It is found that slope height has a weakening effect on rock mass strength, and the relationship between slope height and characteristic trace length of unit is obtained. Considering the influence of slope height, a method of estimating rock mass strength by combining rock strength of small specimen with characteristic trace length of unit is proposed. The method of CSMR scoring, numerical simulation test and characteristic trace length are used to estimate rock mass strength in combination with engineering examples. The mechanical parameters of rock mass obtained by macro-meso-damage mechanics method are compared and verified.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁小清;劉紅巖;劉京平;;基于宏細(xì)觀損傷耦合的非貫通裂隙巖體本構(gòu)模型[J];巖土力學(xué);2015年10期
2 朱璽璽;陳從新;夏開宗;;基于Hoek-Brown準(zhǔn)則的巖體力學(xué)參數(shù)確定方法[J];長(zhǎng)江科學(xué)院院報(bào);2015年09期
3 劉磊;賈洪彪;馬淑芝;;考慮卸荷效應(yīng)的巖質(zhì)邊坡斷裂損傷模型及應(yīng)用[J];巖石力學(xué)與工程學(xué)報(bào);2015年04期
4 許宏發(fā);陳鋒;王斌;華中民;耿漢生;;巖體分級(jí)BQ與RMR的關(guān)系及其力學(xué)參數(shù)估計(jì)[J];巖土工程學(xué)報(bào);2014年01期
5 劉紅巖;呂淑然;邢闖鋒;劉冶;張吉宏;;宏微觀缺陷對(duì)巖體力學(xué)特性影響規(guī)律試驗(yàn)研究[J];自然災(zāi)害學(xué)報(bào);2013年05期
6 李培現(xiàn);;開采沉陷巖體力學(xué)參數(shù)反演的BP神經(jīng)網(wǎng)絡(luò)方法[J];地下空間與工程學(xué)報(bào);2013年S1期
7 賀續(xù)文;劉忠;廖彪;王翠翠;;基于離散元法的節(jié)理巖體邊坡穩(wěn)定性分析[J];巖土力學(xué);2011年07期
8 申艷軍;徐光黎;董家興;朱可俊;;節(jié)理平均跡長(zhǎng)與統(tǒng)計(jì)窗選位關(guān)聯(lián)性分析[J];巖石力學(xué)與工程學(xué)報(bào);2011年03期
9 劉黎;楊學(xué)堂;;基于RMR分類方法的某電站工程邊坡巖體參數(shù)估算[J];三峽大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期
10 王亮清;梁燁;吳瓊;唐輝明;張顯書;;基于彈性波速比的巖體強(qiáng)度參數(shù)估算方法[J];煤田地質(zhì)與勘探;2010年06期
相關(guān)碩士學(xué)位論文 前3條
1 方俊;基于尺寸效應(yīng)的邊坡巖體力學(xué)參數(shù)確定方法研究[D];重慶交通大學(xué);2013年
2 楊永斌;基于BP神經(jīng)網(wǎng)絡(luò)的邊坡巖體力學(xué)參數(shù)反分析[D];中南大學(xué);2011年
3 范衛(wèi)鋒;分形理論在巖石力學(xué)中的應(yīng)用[D];武漢理工大學(xué);2005年
,本文編號(hào):2018785
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2018785.html