天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 地質(zhì)論文 >

Bayesian框架下的地震盲反褶積算法研究

發(fā)布時(shí)間:2018-05-27 16:15

  本文選題:地震盲反褶積 + 反射系數(shù)。 參考:《天津大學(xué)》2015年博士論文


【摘要】:地震盲反褶積是指在地震子波和反射系數(shù)均未知的情況下,僅利用地震記錄實(shí)現(xiàn)地震子波和反射系數(shù)的有效估計(jì),其目的是從地震記錄中分離地震子波,提取高精度的反射系數(shù),改善地震反射系數(shù)資料的分辨率,拓寬其有效頻譜,保留高頻分量,從而能更精確地表征地層結(jié)構(gòu)。地震盲反褶積算法廣泛應(yīng)用于地震信號(hào)分析、地質(zhì)考察、資源探測(cè)、石油勘探、海洋地震勘探等領(lǐng)域。本文主要研究基于Bayesian框架下的地震盲反褶積問(wèn)題,通過(guò)建立地震子波、地震記錄以及反射系數(shù)的相關(guān)先驗(yàn)?zāi)P?利用參數(shù)估計(jì)的方法獲得反射系數(shù)。所做的主要工作如下:(1)研究了變分Bayesian地震盲反褶積算法和稀疏表示的變分Bayesian地震盲反褶積算法,分別建立了地震子波、反射系數(shù)和地震記錄的分層Bayesian先驗(yàn)?zāi)P?推導(dǎo)了算法迭代公式,進(jìn)行了計(jì)算機(jī)仿真,結(jié)果表明新算法有效分離了地震子波,獲得了較高精度的反射系數(shù),改善了均方誤差等量化指標(biāo)。(2)研究了基于部分折疊Gibbs抽樣的Bayesian多通道地震盲反褶積算法,討論了多通道反射系數(shù)的馬爾可夫貝努利高斯模型,通過(guò)部分折疊Gibbs抽樣得到反射系數(shù)最大后驗(yàn)分布的近似解,進(jìn)而實(shí)現(xiàn)反射系數(shù)的估計(jì);同時(shí)分析了改進(jìn)的馬爾可夫貝努利高斯模型,研究了局部邊緣化Gibbs抽樣的Bayesian多通道地震盲反褶積算法。實(shí)驗(yàn)結(jié)果表明新算法拓寬了地震反射系數(shù)資料的有效頻譜,提高了地震反射系數(shù)的分辨率,改善了損失函數(shù)等量化評(píng)價(jià)指標(biāo)。(3)研究了基于線性小波和Curvelet變換的兩種Bayesian壓縮感知地震盲反褶積算法,分析了Bayesian壓縮感知框架下反射系數(shù)、地震子波以及超參數(shù)的先驗(yàn)分布,推導(dǎo)了算法迭代公式,利用期望最大化策略進(jìn)行參數(shù)估計(jì)。實(shí)驗(yàn)仿真分析表明,新算法改善了反褶積效果,降低了歸一化均方誤差,提高了地震反射系數(shù)的估計(jì)精度。
[Abstract]:Seismic blind deconvolution refers to the effective estimation of seismic wavelet and reflection coefficient only by using seismic records when the seismic wavelet and reflection coefficient are unknown. The purpose of the deconvolution is to separate seismic wavelet from seismic record. The high precision reflection coefficient is extracted, the resolution of seismic reflection coefficient data is improved, the effective frequency spectrum is widened, and the high frequency component is retained, thus the stratigraphic structure can be represented more accurately. Seismic blind deconvolution algorithm is widely used in seismic signal analysis, geological survey, resource exploration, petroleum exploration, marine seismic exploration and other fields. In this paper, the seismic blind deconvolution problem based on Bayesian framework is studied. The reflection coefficient is obtained by establishing a prior model of seismic wavelet, seismic record and reflection coefficient. The main work is as follows: (1) the variational Bayesian seismic blind deconvolution algorithm and the sparse representation variational Bayesian seismic blind deconvolution algorithm are studied. The hierarchical Bayesian prior models of seismic wavelet, reflection coefficient and seismic records are established, respectively. The iterative formula of the algorithm is derived and the computer simulation is carried out. The results show that the new algorithm can effectively separate seismic wavelet and obtain a high precision reflection coefficient. The blind Bayesian seismic deconvolution algorithm based on partially folded Gibbs sampling is studied, and the Markov Bernoulli Gao Si model with multi-channel reflection coefficient is discussed. The approximate solution of the maximum posterior distribution of the reflection coefficient is obtained by partially folded Gibbs sampling, and the estimation of the reflection coefficient is realized, and the improved Markov Bernoulli Gao Si model is also analyzed. A blind Bayesian seismic deconvolution algorithm based on locally marginalized Gibbs sampling is studied. The experimental results show that the new algorithm broadens the effective spectrum of seismic reflection coefficient data and improves the resolution of seismic reflection coefficient. Based on linear wavelet transform and Curvelet transform, two blind deconvolution algorithms for Bayesian compression sensing seismic are studied. The prior distributions of reflection coefficient, seismic wavelet and superparameter are analyzed under the frame of Bayesian compression perception. The iterative formula of the algorithm is derived, and the parameter estimation is carried out by using the expectation maximization strategy. The experimental results show that the new algorithm improves the deconvolution effect, reduces the normalized mean square error, and improves the estimation accuracy of seismic reflection coefficient.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:P631.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;Bayesian and Geostatistical Approaches to Combining Categorical Data Derived from Visual and Digital Processing of Remotely Sensed Images[J];Geo-Spatial Information Science;2005年02期

2 ;Application of Bayesian Network Learning Methods to Land Resource Evaluation[J];Wuhan University Journal of Natural Sciences;2006年04期

3 ;Exact Bayesian and Fiducial Limits for the Mean of Lognormal Distribution[J];Chinese Journal of Systems Engineering and Electronics;1994年02期

4 張劍;葉見(jiàn)曙;趙新銘;;Dynamic Bayesian estimation of displacement parameters of continuous curve box based on Novozhilov theory[J];Applied Mathematics and Mechanics(English Edition);2007年01期

5 ;Research on Bayesian Network Based User's Interest Model[J];Wuhan University Journal of Natural Sciences;2007年05期

6 ;Stochastic back analysis of permeability coefficient using generalized Bayesian method[J];Water Science and Engineering;2008年03期

7 朱永生;;Bayesian credible interval construction for Poisson statistics[J];中國(guó)物理C;2008年05期

8 ;Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network[J];Journal of Northeast Agricultural University(English Edition);2008年02期

9 ;Study of testability measurement method for equipment based on Bayesian network model[J];Journal of Systems Engineering and Electronics;2009年05期

10 董旭初 ,歐陽(yáng)丹彤 ,劉大有;Bayesian網(wǎng)推理中的化簡(jiǎn)方法[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2004年01期

相關(guān)會(huì)議論文 前10條

1 ;Optimal Coordination of Multi-task Allocation and Path Planning for UAVs Using Dynamic Bayesian Network[A];2009中國(guó)控制與決策會(huì)議論文集(3)[C];2009年

2 ;Bayesian Network analysis on agency behavior of controlling shareholders[A];2009中國(guó)控制與決策會(huì)議論文集(1)[C];2009年

3 ;Expected Bayesian Credible Limit of Reliability Parameters in the Case of Zero-Failure Data for Exponential Distribution[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年

4 ;Research on Applying Bayesian Networks to Condition-Based Maintenance of Hydroelectric Set[A];第二十三屆中國(guó)控制會(huì)議論文集(下冊(cè))[C];2004年

5 ;A Recursive Method of Learning Bayesian Network for Rule Extraction Based on Information Theory[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2005)論文集[C];2005年

6 ;Application of Data Mining Model Based on Bayesian Artificial Neural Network in Fault Diagnosis for Hydraulic Generators[A];第二十四屆中國(guó)控制會(huì)議論文集(下冊(cè))[C];2005年

7 ;A Reliability Improvement Predictive Approach to Software Testing with Bayesian Method[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年

8 ZHU Zoe;;Threat Assessment Based on Variable Parameter Dynamic Bayesian Network[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年

9 ;Bayesian methods for cycle slips detection based on autoregressive model[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S03精密定軌與精密定位[C];2012年

10 ;Fault Prognosis for Data Incomplete Systems: A Dynamic Bayesian Network Approach[A];第24屆中國(guó)控制與決策會(huì)議論文集[C];2012年

相關(guān)博士學(xué)位論文 前5條

1 李艷琴;Bayesian框架下的地震盲反褶積算法研究[D];天津大學(xué);2015年

2 彭青松;Bayesian網(wǎng)及其在圖像分析中的應(yīng)用研究[D];合肥工業(yè)大學(xué);2005年

3 董旭初;Bayesian網(wǎng)的最優(yōu)樹(shù)分解研究[D];吉林大學(xué);2011年

4 張召友;非線性Bayesian濾波及其在SINS/GPS緊耦合導(dǎo)航中的應(yīng)用研究[D];哈爾濱工程大學(xué);2013年

5 Muzahem Mohammed Yahya Al-Hashimi;[D];華中科技大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 董海彪;基于克里格替代模型和改進(jìn)的Bayesian-MCMC方法的地下水污染源反演識(shí)別研究[D];吉林大學(xué);2016年

2 滕德雄;基于Bayesian的空間多層線性回歸模型的參數(shù)估計(jì)及其應(yīng)用[D];新疆大學(xué);2016年

3 于鵬;一種Bayesian網(wǎng)結(jié)構(gòu)學(xué)習(xí)算法的研究[D];吉林大學(xué);2005年

4 毛小云;基于Bayesian網(wǎng)絡(luò)的對(duì)等環(huán)境負(fù)載均衡模型[D];浙江大學(xué);2008年

5 王昆;一種基于Bayesian CBR的推薦系統(tǒng)研究[D];河北師范大學(xué);2011年

6 董旭初;Bayesian網(wǎng)推理算法及基于Bayesian網(wǎng)的農(nóng)業(yè)專(zhuān)家系統(tǒng)開(kāi)發(fā)工具組件[D];吉林大學(xué);2004年

7 王鵬;Bayesian網(wǎng)推理算法及在圖像分類(lèi)上的應(yīng)用[D];吉林大學(xué);2006年

8 呂利;應(yīng)用Bayesian網(wǎng)處理基于一致性診斷中的不確定性問(wèn)題的研究[D];吉林大學(xué);2007年

9 潘吉斯;一種Bayesian網(wǎng)絡(luò)結(jié)構(gòu)的并行學(xué)習(xí)方法[D];蘇州大學(xué);2006年

10 孫圢;基于Bayesian網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)及推理的轉(zhuǎn)爐煤氣調(diào)度[D];大連理工大學(xué);2013年



本文編號(hào):1942877

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1942877.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8d807***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com