TTI介質(zhì)準(zhǔn)縱波逆時(shí)偏移方法研究
本文選題:TTI介質(zhì) + 逆時(shí)偏移。 參考:《中國(guó)石油大學(xué)(華東)》2015年博士論文
【摘要】:隨著油氣勘探與開(kāi)發(fā)難度的加深,提高復(fù)雜地質(zhì)條件如巖下、斷層、裂縫等介質(zhì)的成像精度和分辨率等需求也越來(lái)越嚴(yán)峻。充分挖掘并利用地震各向異性等信息,對(duì)速度建模、成像及反演等方法的擴(kuò)展和改進(jìn)都具有重要價(jià)值。橫各向同性(TI)介質(zhì)是最常用的一種各向異性模型,它包括對(duì)稱軸垂直(VTI)和傾斜(TTI)兩種情況。各向異性介質(zhì)彈性波方程可準(zhǔn)確描述TI介質(zhì)中波的傳播特征,但對(duì)于采用雙程波方程準(zhǔn)確成像的逆時(shí)偏移應(yīng)用,它不僅需要龐大的計(jì)算代價(jià),還要求提供橫波速度模型等條件,均不利于對(duì)其展開(kāi)廣泛應(yīng)用。因此研究各向異性介質(zhì)(特別是TTI介質(zhì))中單獨(dú)利用準(zhǔn)縱波進(jìn)行地震成像處理具有重要意義。TTI介質(zhì)的準(zhǔn)縱波方程有兩種形式,一種是耦合方程,另一種是純波方程。本文通過(guò)運(yùn)用Alkhalifah的擬聲學(xué)近似,假設(shè)沿對(duì)稱軸方向的橫波速度為零,對(duì)兩種方程的推導(dǎo)和數(shù)值實(shí)現(xiàn)進(jìn)行研究。耦合方程推導(dǎo)有兩種方式,一種是以準(zhǔn)確的TI介質(zhì)頻散關(guān)系為基礎(chǔ),另一種則直接由彈性運(yùn)動(dòng)方程出發(fā),兩種不同的推導(dǎo)可以得到形式上相似的二階耦合方程,它們具有足夠高的精度以描述準(zhǔn)縱波運(yùn)動(dòng)學(xué)特征,二階耦合方程可在時(shí)空域中運(yùn)用有限差分?jǐn)?shù)值實(shí)現(xiàn)。然而,擬聲學(xué)近似只是將對(duì)稱軸方向上的橫波速度值設(shè)為零,在非對(duì)稱軸方向上仍存在剩余橫波,剩余橫波伴隨有效信號(hào)參與反射,在準(zhǔn)縱波正演模擬中構(gòu)成噪音污染,并且隨著數(shù)值模擬的時(shí)間推進(jìn),在介質(zhì)物性變化劇烈區(qū)域易引起數(shù)值不穩(wěn)定。TTI介質(zhì)準(zhǔn)縱波逆時(shí)偏移另一個(gè)研究趨勢(shì)是解耦的純準(zhǔn)縱波方程,這是因?yàn)榛诨旌嫌驎r(shí)間延拓的解耦方程不僅從根本上消除了橫波剩余干擾,同時(shí)還具有在長(zhǎng)時(shí)間模擬中無(wú)頻散、穩(wěn)定傳播的優(yōu)勢(shì),它徹底不存在耦合方程面臨的兩個(gè)難題——橫波剩余和數(shù)值不穩(wěn)定,并且同樣基于擬聲學(xué)近似的純波方程充分滿足對(duì)精度的需求。純波方程的基本原理是將TI介質(zhì)的頻散關(guān)系形式上解耦,分別得到準(zhǔn)縱波與橫波方程,然后利用混合空間波數(shù)域的數(shù)值方法求解準(zhǔn)縱波純波方程,實(shí)現(xiàn)混合域時(shí)間延拓。本文研究的準(zhǔn)縱波方程皆以逆時(shí)偏移(RTM)的應(yīng)用為目的,RTM計(jì)算包括三個(gè)步驟——正向波場(chǎng)延拓、逆時(shí)波場(chǎng)延拓,以及成像條件的運(yùn)用。為得到精度和分辨率更高的偏移結(jié)果,需要處理RTM寬角成像能力引起的淺層低頻噪音,本文應(yīng)用成像后濾波壓制偏移假象,此外還運(yùn)用多組模型測(cè)試對(duì)準(zhǔn)縱波逆時(shí)偏移的幾個(gè)問(wèn)題進(jìn)行對(duì)比研究,包括TTI偏移算法與各向同性和VTI偏移的比較,耦合方程與純波方程逆時(shí)偏移結(jié)果的對(duì)比分析等,通過(guò)一系列模型試算得出幾點(diǎn)認(rèn)識(shí)。最后,作為對(duì)擬聲學(xué)近似方程的補(bǔ)充,本研究對(duì)TTI介質(zhì)全彈性波動(dòng)方程RTM同樣給予了充分的研究和介紹。與準(zhǔn)縱波方程的標(biāo)量波場(chǎng)相比,彈性波方程的矢量波場(chǎng)存在縱橫波的耦合與轉(zhuǎn)換等復(fù)雜波場(chǎng)現(xiàn)象,傳統(tǒng)的彈性波成像條件無(wú)法對(duì)縱橫波準(zhǔn)確成像,而基于縱橫波分解的成像條件則能夠克服此問(wèn)題,得到物理意義明確的偏移結(jié)果,有利于在后續(xù)地震資料處理和解釋中的應(yīng)用。TTI介質(zhì)中縱橫波場(chǎng)分解不能采用各向同性介質(zhì)中求取散度和旋度的直接方法,構(gòu)建與局部介質(zhì)參數(shù)相關(guān)的分離算子可在非均勻TTI介質(zhì)中將縱橫波場(chǎng)準(zhǔn)確的進(jìn)行分離,將其應(yīng)用于TTI介質(zhì)彈性波RTM對(duì)提高成像的準(zhǔn)確度有較大作用。通過(guò)比較同一 TTI介質(zhì)地質(zhì)模型參數(shù)下的準(zhǔn)縱波RTM和彈性波RTM的縱波偏移結(jié)果,可對(duì)準(zhǔn)縱波方法精度等進(jìn)行初步的評(píng)價(jià)。本文針對(duì)彈性波TTI介質(zhì)逆時(shí)偏移面臨的問(wèn)題,提出了基于耦合方程和純波方程的準(zhǔn)縱波逆時(shí)偏移方法,準(zhǔn)縱波逆時(shí)偏移可以極大的提高計(jì)算效率,模型試算表明本文方法對(duì)非均勻各向異性介質(zhì)成像問(wèn)題的解決具有較好的適用性和有效性,能為復(fù)雜地震勘探提供較高分辨率和信噪比的偏移剖面。目前研究尚存在一些需要完善的內(nèi)容,對(duì)此相關(guān)的許多重要問(wèn)題仍需做進(jìn)一步深入和廣泛的研究。
[Abstract]:With the deepening of the difficulty of oil and gas exploration and development, the need for improving the imaging precision and resolution of the medium, such as rock, fault and crack, is becoming more and more serious. It is of great value to fully excavate and utilize seismic anisotropy, which is of great value to the expansion and improvement of velocity modeling, imaging and inversion. TI) medium is one of the most commonly used anisotropic models, which include two cases of symmetrical axis vertical (VTI) and tilt (TTI). The elastic wave equation of anisotropic medium can accurately describe the propagation characteristics of waves in the TI medium, but it requires not only a huge calculation cost but also a large calculation cost for the accurate imaging of a double wave equation. The transverse wave velocity model and other conditions are not conducive to the extensive application of it. Therefore, it is important to study the quasi longitudinal wave in the anisotropic medium (especially TTI medium) using quasi longitudinal wave for seismic imaging processing. There are two forms of quasi longitudinal wave equation of.TTI medium. One is the coupling equation and the other is the pure wave equation. This paper uses Alkhalifa in this paper. H's onomatopoeia approximation, assuming that the velocity of the transverse wave along the symmetrical axis is zero, studies the derivation and numerical realization of the two equations. There are two ways to deduce the coupling equation. One is based on the accurate dispersion relation of the TI medium, the other is directly derived from the elastic motion equation, and the two different derivation can be obtained in the form similarity. The two order coupling equations have high precision to describe the kinematic characteristics of quasi longitudinal waves. The two order coupling equations can be realized by finite difference numerical values in the spatio-temporal domain. However, the quasi acoustic approximation only approximated the transverse wave velocity in the direction of the symmetric axis to zero, and the residual transverse waves still exist in the asymmetric axis, and the residual transverse waves are accompanied by the wave. The effect signal participates in the reflection and constitutes noise pollution in the quasi longitudinal wave forward modeling, and with the time of the numerical simulation, the other research trend of the inverse time migration of the quasi longitudinal wave of the numerical unstable.TTI medium is a decoupled pure quasi longitudinal wave equation. This is due to the decoupling square based on the time extension of the mixed domain. It not only eliminates the residual interference of the transverse wave radically, but also has the advantages of no dispersion and stable propagation in the long time simulation. It does not exist two difficult problems of the coupling equation - the residual of the transverse wave and the numerical instability, and the same pure wave equation based on the approximation of the onomatopoeia fully satisfies the demand for the precision. The basic principle is to decouple the dispersion relation of TI medium, obtain the quasi longitudinal wave and the transverse wave equation respectively, and then use the numerical method of the mixed space wave number domain to solve the quasi longitudinal wave pure wave equation and realize the mixed domain time extension. The quasi longitudinal wave equation studied in this paper is aimed at the application of the inverse time migration (RTM), and the RTM calculation includes three steps. The forward wave field extension, the inverse time wave field extension, and the application of imaging conditions. In order to obtain higher precision and resolution, we need to deal with the low frequency noise caused by the RTM wide angle imaging capability. In this paper, the post imaging filtering is used to suppress the offset false image. In addition, several groups of models are used to test several questions on the inverse time migration of longitudinal wave. The comparison study includes the comparison between the TTI migration algorithm and the isotropy and the VTI migration, the contrast analysis of the inverse time migration result of the coupling equation and the pure wave equation and so on. The results are obtained by a series of models. Finally, as a supplement to the quasi acoustic approximation equation, the research is also given to the full elastic wave equation RTM of the TTI medium. Compared with the scalar wave field of the quasi longitudinal wave equation, the vector wave field of the elastic wave equation has complex wave fields such as the coupling and conversion of the longitudinal and horizontal waves. The traditional elastic wave imaging conditions can not accurately imaging the longitudinal and transverse waves, while the imaging strip based on the vertical and horizontal wave decomposition can overcome this problem and get the physical meaning clear. The result of migration is beneficial to the application of the.TTI medium in the subsequent seismic data processing and interpretation. The vertical and horizontal wave field decomposition can not be used to obtain the divergence and curl in the isotropic medium. The separation operator related to the local medium parameters can be used to separate the vertical and horizontal wave field in the non-uniform TTI medium and apply it. The elastic wave RTM in the TTI medium has a great effect on improving the accuracy of the imaging. By comparing the longitudinal wave RTM of the same TTI medium geological model and the longitudinal wave migration of the elastic wave RTM, the accuracy of the align P-wave method is preliminarily evaluated. In this paper, the problems facing the inverse time migration of the elastic wave TTI medium are presented, and the coupling is proposed. The inverse time migration of quasi longitudinal wave in the equation and the pure wave equation and the inverse time migration of quasi longitudinal wave can greatly improve the computational efficiency. The model trial calculation shows that the proposed method has good applicability and effectiveness for the solution of the nonuniform anisotropic media imaging problem, and can provide a high resolution and signal to noise ratio offset section for complex seismic exploration. At present, there are still some problems that need to be improved. Many important issues still need further in-depth and extensive research.
【學(xué)位授予單位】:中國(guó)石油大學(xué)(華東)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:P631.4;P618.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛桂霞,鄧世坤,劉秀娟;逆時(shí)偏移在探地雷達(dá)信號(hào)處理中的應(yīng)用[J];煤田地質(zhì)與勘探;2004年01期
2 楊勤勇;段心標(biāo);;逆時(shí)偏移技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)[J];石油物探;2010年01期
3 張春燕;李振春;孫小東;;逆時(shí)偏移方法技術(shù)進(jìn)展綜述[J];勘探地球物理進(jìn)展;2010年05期
4 滕厚華;許衛(wèi)華;于曉莉;尚新民;賀紅蕾;;無(wú)反射遞推算法疊后逆時(shí)偏移的研究與應(yīng)用[J];油氣地球物理;2011年04期
5 許璐;孟小紅;劉國(guó)峰;;逆時(shí)偏移去噪方法研究進(jìn)展[J];地球物理學(xué)進(jìn)展;2012年04期
6 王童奎;李瑩;郭愛(ài)華;石文武;楊曉利;孫明;潘歡;;逆時(shí)偏移技術(shù)在南堡1號(hào)構(gòu)造中的應(yīng)用研究[J];地球物理學(xué)進(jìn)展;2012年06期
7 康智清;劉恩;司杰戈;陳康;;逆時(shí)偏移剖面假象產(chǎn)生機(jī)制及其消除方法[J];石油天然氣學(xué)報(bào);2013年01期
8 胡明順;潘冬明;董守華;金紅娣;趙新;;基于散射理論的逆時(shí)偏移隨機(jī)邊界構(gòu)建策略優(yōu)化分析[J];地球物理學(xué)進(jìn)展;2013年04期
9 張叔倫;陳靜;張關(guān)泉;;逆時(shí)偏移的方向?qū)?shù)算法[J];石油地球物理勘探;1991年06期
10 Ruey-Chyuan Shih;A.R.Levander;陳炳文;;層剝離逆時(shí)偏移[J];國(guó)外油氣勘探;1995年04期
相關(guān)會(huì)議論文 前10條
1 杜啟振;秦童;;逆時(shí)偏移最佳匹配層邊界實(shí)現(xiàn)[A];中國(guó)地球物理·2009[C];2009年
2 陳康;;逆時(shí)偏移剖面的波數(shù)域分析及高階拉普拉斯濾波算法的實(shí)現(xiàn)[A];“地球·資源”全國(guó)博士生學(xué)術(shù)論壇會(huì)議論文摘要集[C];2011年
3 龍?jiān)?韓立國(guó);韓利;鄧武斌;;單程波逆時(shí)偏移[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年
4 李慶洋;李振春;黃建平;;基于雙變算法的精細(xì)逆時(shí)偏移成像[A];中國(guó)地球物理2013——第二十二專題論文集[C];2013年
5 曹曉莉;黃建平;李振春;;最小二乘逆時(shí)偏移高精度成像方法研究[A];中國(guó)地球物理2013——第二十二專題論文集[C];2013年
6 許璐;孟小紅;劉國(guó)峰;;成像后壓制逆時(shí)偏移噪聲[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年
7 薛霆哠;張書(shū)杰;;逆時(shí)偏移中坡印廷向量濾波的改進(jìn)方法[A];中國(guó)地球物理2013——第二十二專題論文集[C];2013年
8 楊仁虎;毛偉健;凌云;;逆時(shí)偏移儲(chǔ)層成像波形校正研究[A];中國(guó)地球物理2013——第二十專題論文集[C];2013年
9 曾同生;李振春;;基于疊前逆時(shí)偏移的速度分析方法研究[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年
10 胡昊;劉伊克;王一博;;地震疊前逆時(shí)偏移不同邊界處理方式研究[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前2條
1 王躍;物探院逆時(shí)偏移成像技術(shù)躋身國(guó)際前列[N];中國(guó)石化報(bào);2013年
2 本報(bào)記者 劉洪宇;石油HPC走向“平衡計(jì)算”[N];中國(guó)計(jì)算機(jī)報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 李靜爽;基于近似解析離散化算子的逆時(shí)偏移方法及其應(yīng)用[D];清華大學(xué);2014年
2 程飛;多井井間三維波場(chǎng)數(shù)值模擬與逆時(shí)偏移成像研究[D];中國(guó)地質(zhì)大學(xué);2015年
3 馮蘭蘭;保辛幾何結(jié)構(gòu)不變的逆時(shí)偏移方法研究[D];清華大學(xué);2015年
4 楊佳佳;多分量地震波逆時(shí)偏移的關(guān)鍵技術(shù)研究[D];中國(guó)海洋大學(xué);2015年
5 高新成;基于云計(jì)算的逆時(shí)偏移數(shù)據(jù)處理方法研究[D];東北石油大學(xué);2016年
6 Naveed Akram;基于彈性波模擬的逆時(shí)偏移以及地震數(shù)據(jù)解釋[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
7 王娟;TTI介質(zhì)準(zhǔn)縱波逆時(shí)偏移方法研究[D];中國(guó)石油大學(xué)(華東);2015年
8 趙旭;時(shí)域聲波方程逆時(shí)偏移成像及其角道集計(jì)算[D];吉林大學(xué);2015年
9 蔡志成;基于Q補(bǔ)償?shù)酿椊橘|(zhì)逆時(shí)偏移成像研究[D];中國(guó)地質(zhì)大學(xué);2017年
10 王京;隧道空間有限元地震波場(chǎng)模擬與逆時(shí)偏移成像[D];中國(guó)地質(zhì)大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 陳洪杰;基于聲波方程的數(shù)值模擬與逆時(shí)偏移方法研究[D];吉林大學(xué);2010年
2 魏巍;基于疊前逆時(shí)偏移方法的圓管損傷識(shí)別[D];哈爾濱工業(yè)大學(xué);2015年
3 張敬秋;交錯(cuò)網(wǎng)格有限差分法地震資料逆時(shí)偏移[D];成都理工大學(xué);2015年
4 劉詩(shī)竹;VSP數(shù)據(jù)成像方法研究[D];東北石油大學(xué);2015年
5 柯璇;復(fù)雜構(gòu)造疊前逆時(shí)偏移成像方法研究[D];東北石油大學(xué);2015年
6 侯維麗;逆時(shí)偏移成像[D];東北石油大學(xué);2015年
7 郭雪豹;VSP地震資料逆時(shí)偏移方法研究[D];東北石油大學(xué);2015年
8 張千祥;純P波各向異性介質(zhì)波場(chǎng)數(shù)值模擬及逆時(shí)偏移研究[D];吉林大學(xué);2016年
9 于江龍;聲波逆時(shí)偏移及噪聲壓制[D];吉林大學(xué);2016年
10 方修政;各向異性介質(zhì)逆時(shí)偏移方法研究[D];東北石油大學(xué);2016年
,本文編號(hào):1914237
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1914237.html