考慮巖體裂隙粗糙度的動水注漿模擬試驗
本文選題:交互作用 + 動水。 參考:《中國礦業(yè)大學(xué)》2017年碩士論文
【摘要】:裂隙巖體突涌水問題嚴重影響著地下工程的安全,注漿治理技術(shù)已成為突水災(zāi)害防治和預(yù)防的關(guān)鍵手段之一。加強對裂隙動水條件下的注漿封堵效果相關(guān)理論和技術(shù)研究是非常有必要的。本文考慮了因素之間交互作用進行了裂隙動水注漿模擬實驗研究,分析了各因素及其交互作用對注漿堵水效果的影響。建立粗糙度裂隙動水注漿試驗平臺,進行了不同粗糙度裂隙注漿模擬平行試驗和單裂隙動水注漿影響因素試驗,研究了裂隙粗糙度對注漿堵水、漿液擴散、留存封堵、裂隙滲流壓力的影響及原因。主要研究內(nèi)容及成果如下:(1)進行了動水流速、裂隙開度、注漿流量和漿液膠凝時間及其交互作用的平直光滑裂隙注漿堵水試驗。影響注漿堵水率大小的順序依次為裂隙開度D、動水流速A×裂隙開度D、注漿流量B×膠凝時間C。動水流速與裂隙開度之間、注漿流量與膠凝時間之間存在交互作用,其對注漿堵水率有顯著影響。確定的因素水平的最優(yōu)組合為:動水流速A為2cm/s,注漿流量B為200 ml/min,膠凝時間C為99.8s和裂隙開度D為2mm。(2)組裝了模擬粗糙裂隙動水注漿試驗系統(tǒng)平臺,根據(jù)Barton標準粗糙度等級剖面曲線,進行了10組不同粗糙度裂隙注漿模擬平行試驗。漿液在粗糙裂隙中的擴散形態(tài)分為兩種類型:近圓形擴散整體推移型和近矩形擴散跨越驅(qū)替型。當(dāng)裂隙粗糙度系數(shù)JRC≤8時,漿液擴散形態(tài)為近圓形擴散整體推移型,漿液的前期擴散過程與相同條件下平直光滑裂隙的擴散過程基本類似。當(dāng)裂隙粗糙度系數(shù)JRC8時,漿液擴散形態(tài)近矩形擴散跨越驅(qū)替型。裂隙粗糙度對漿液的擴散距離與擴散面積有著很大影響,裂隙粗糙度系數(shù)越小,越有利于漿液的擴散,粗糙度系數(shù)越大,漿液擴散越困難。(3)對不同粗糙度裂隙注漿平行試驗的水流量變化曲線規(guī)律進行分析。水流量變化曲線分為三類:單平臺遞減型、多峰值波動型與雙平臺型。從堵水率可以看出,當(dāng)裂隙粗糙度系數(shù)JRC≤10時,其注漿堵水效果均不好,基本處于“失敗”與“非常差”等級。而當(dāng)JRC10時,堵水率要優(yōu)于JRC≤10的情況。(4)不同粗糙度裂隙注漿平行試驗的滲流壓力場分為:“單峰型”、“多峰型”、“平臺型”和“波動型”四種類型。裂隙粗糙度系數(shù)JRC≤8時,其滲流壓力場容易出現(xiàn)“單峰型”和“波動型”滲流壓力場。當(dāng)裂隙粗糙度系數(shù)JRC8時,其滲流壓力場基本上為“多峰型”和““平臺型””滲流壓力場。(5)單裂隙動水注漿效果及影響因素試驗中,影響注漿堵水效果的因素由大到小依次為漿液膠凝時間、裂隙粗糙度系數(shù)、動水流速。(6)在單裂隙動水注漿正交試驗中,裂隙的粗糙度系數(shù)決定了漿液的擴散的整體類型,而動水流速和漿液的膠凝時間在裂隙粗糙度系數(shù)較小時,對漿液擴散形態(tài)影響不大,而粗糙度系數(shù)較大時,動水流速越大,漿液的膠凝時間越長,漿液破碎越嚴重,封堵效果越差,當(dāng)動水流速最小時,漿液會向逆水流方向跨越擴散而不是順水流方向。裂隙粗糙度系數(shù)對注漿過程中,水流量變化的影響較大,而動水流速與漿液膠凝時間的改變對注漿過程中水流量的改變影響較小。
[Abstract]:The problem of water inrush from fractured rock mass seriously affects the safety of underground engineering, and grouting treatment technology has become one of the key means to prevent and prevent water inrush. It is necessary to strengthen the research on the theory and technology of grouting sealing effect under the condition of dynamic water. The influence of various factors and their interaction on the water plugging effect is analyzed. The experimental platform of roughness fractured water grouting is set up, and the experiment of the parallel experiment of grouting simulation with different roughness and the influence factors of the single crack moving water grouting are carried out. The water plugging, the diffusion of slurry and the retention of the slurry are studied. The main research contents and results are as follows: (1) the water flow velocity, crack opening, grouting flow and slurry gelation time and the interaction of the smooth crevice grouting test are carried out. The order of the size of the grouting water plugging rate is the fracture opening D, the moving water velocity A x fracture opening D, There is an interaction between the slurry flow rate and the crack opening time between the slurry flow B and the cementitious time C. and the cementitious time, which has a significant influence on the water plugging rate. The optimal combination of the determined factor level is that the flow velocity A is 2cm/s, the grouting flow B is 200 ml/min, the cementitious time C is 99.8s and the crack opening D is 2mm. (2). According to the Barton standard roughness grade profile, 10 groups of different roughness fracture grouting simulation parallel experiments are carried out on the platform of rough fissure water grouting test system. The diffusion morphology of the slurry in the rough fissure is divided into two types: the near circular diffusion whole load type and the near moment diffusion spanning displacement type. When the crack roughness coefficient is J When RC is less than 8, the diffusion morphology of the slurry is near circular diffusion, and the initial diffusion process of the slurry is similar to that of the smooth and smooth fracture under the same condition. When the crack roughness coefficient is JRC8, the diffusion morphology of the slurry is near the displacement type. The crack roughness has a very good effect on the diffusion distance and the diffusion area of the slurry. The smaller the coefficient of fissure roughness is, the more conducive to the diffusion of the slurry, the more the roughness coefficient is, the more difficult the slurry diffusion is. (3) the water flow variation curve of different roughness grouting parallel tests is analyzed. The water flow variation curve is divided into three types: single platform decreasing type, multi peak wave type and double platform type. It can be seen that when the crack roughness coefficient JRC is less than 10, the water plugging effect of the grouting is not good, and it is basically in the "failure" and "very poor" grade. When JRC10, the water plugging rate is better than that of JRC < 10. (4) the seepage pressure field of the parallel test of different roughness fracture grouting is divided into "single peak type", "multi peak type", "platform type" and "platform type". "Wave type" four types. When the crack roughness coefficient JRC is less than 8, the seepage pressure field is prone to "single peak" and "wave type" seepage pressure field. When the crack roughness coefficient is JRC8, the seepage pressure field is basically "multi peak type" and "platform type" seepage pressure field. (5) the effect of water grouting in single fracture and the influence cause of the seepage pressure field. In the element test, the factors affecting the water plugging effect from large to small are serous cementitious time, fissure roughness coefficient, and moving water velocity. (6) in the orthogonal test of single fractured water grouting, the roughness coefficient of the crack determines the whole type of the diffusion of the slurry, while the dynamic flow velocity and the gelation time of the slurry are smaller in the fissure roughness coefficient. When the moving water velocity is larger, the longer the flow velocity is, the longer the sizing time of the slurry, the more serious the sizing is, the worse the plugging effect is. When the flow velocity is the hourly speed, the slurry will spread to the reverse flow direction and not the flow direction. The water flow change during the grouting process is changed by the crack roughness coefficient. The influence of dynamic water velocity and slurry gelation time has little effect on the change of water flow in grouting process.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU45
【參考文獻】
相關(guān)期刊論文 前10條
1 陳世江;朱萬成;王創(chuàng)業(yè);張飛;;巖體結(jié)構(gòu)面粗糙度系數(shù)定量表征研究進展[J];力學(xué)學(xué)報;2017年02期
2 李化;黃潤秋;;巖石結(jié)構(gòu)面粗糙度系數(shù)JRC定量確定方法研究[J];巖石力學(xué)與工程學(xué)報;2014年S2期
3 俞文生;李鵬;張霄;王倩;;可變傾角單裂隙動水注漿模型試驗研究[J];巖土力學(xué);2014年08期
4 劉健;劉人太;張霄;李術(shù)才;;水泥漿液裂隙注漿擴散規(guī)律模型試驗與數(shù)值模擬[J];巖石力學(xué)與工程學(xué)報;2012年12期
5 湛鎧瑜;隋旺華;王文學(xué);;裂隙動水注漿滲流壓力與注漿堵水效果的相關(guān)分析[J];巖土力學(xué);2012年09期
6 錢自衛(wèi);姜振泉;曹麗文;;滲透注漿漿液擴散半徑計算方法研究及應(yīng)用[J];工業(yè)建筑;2012年07期
7 李術(shù)才;張霄;張慶松;孫克國;徐堯;張偉杰;李海燕;劉人太;李鵬;;地下工程涌突水注漿止水漿液擴散機制和封堵方法研究[J];巖石力學(xué)與工程學(xué)報;2011年12期
8 邵紅旗;王維;;雙液注漿法快速建造阻水墻封堵突水巷道[J];煤礦安全;2011年11期
9 張霄;李術(shù)才;張慶松;孫克國;劉人太;韓偉偉;原小帥;;關(guān)鍵孔注漿方法在高壓裂隙水封堵中的應(yīng)用研究[J];巖石力學(xué)與工程學(xué)報;2011年07期
10 湛鎧瑜;隋旺華;高岳;;單一裂隙動水注漿擴散模型[J];巖土力學(xué);2011年06期
相關(guān)會議論文 前1條
1 王岐;;用伸長率R確定巖石節(jié)理粗糙度系數(shù)的研究[A];地下工程經(jīng)驗交流會論文選集[C];1982年
相關(guān)博士學(xué)位論文 前4條
1 錢自衛(wèi);孔隙砂巖化學(xué)注漿漿液滲透擴散機理[D];中國礦業(yè)大學(xué);2014年
2 胡巍;巖體裂隙與管道動水注漿漿液擴散封堵機理研究[D];中國礦業(yè)大學(xué);2013年
3 劉人太;水泥基速凝漿液地下工程動水注漿擴散封堵機理及應(yīng)用研究[D];山東大學(xué);2012年
4 王檔良;多孔介質(zhì)動水化學(xué)注漿機理研究[D];中國礦業(yè)大學(xué);2011年
,本文編號:1882768
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1882768.html