頁巖巖石物理響應(yīng)及AVO技術(shù)
本文選題:頁巖 + 巖石物理。 參考:《吉林大學(xué)》2015年碩士論文
【摘要】:隨著世界經(jīng)濟的不斷發(fā)展,油氣資源的需求越來越大,而可再生的替代能源進展緩慢,非常規(guī)儲層的油氣資源越來越受到重視。頁巖儲層中的油氣在非常規(guī)儲層油氣中占有相當(dāng)大的比例,所以頁巖巖石物理模型的研究是具有十分重要的意義,其成果可以為地震反演提供理論依據(jù)。 頁巖巖石物理模型在地震勘探領(lǐng)域中的研究已經(jīng)起步,這里頁巖巖石物理模型包含兩類:一類是富有機質(zhì)頁巖模型,這里富有機質(zhì)頁巖是孔隙中充填干酪根(固體有機質(zhì))、油、水等的頁巖模型;另一類是水平層理縫的頁巖模型,頁巖為沉積巖,水平層理比較發(fā)育,其中含有一些微裂隙,這些構(gòu)成油氣流動的通道。這兩類模型都能描述橫向各向同性的頁巖介質(zhì)。 富有機質(zhì)頁巖模型前人已經(jīng)討論了反射系數(shù)與干酪根含量、入射角以及地層厚度的變化關(guān)系。在此基礎(chǔ)上加入頻率的影響,通過傳播矩陣算法,計算不同厚度的富有機質(zhì)頁巖模型的地層反射系數(shù),得到不同干酪根含量的頻變反射系數(shù)隨入射角變化的關(guān)系,進而加入子波的影響得到反射波的地震合成記錄。 水平層理縫的頁巖模型是把已有的Hudson裂縫模型和Schoenberg裂縫模型應(yīng)用在頁巖介質(zhì)上,即背景巖石為頁巖。通過傳播矩陣算法,計算水平層理縫頁巖模型的地層反射系數(shù),得到不同裂縫密度下的頻變反射系數(shù)隨入射角變化的關(guān)系,再加入子波的影響得到反射波的地震合成記錄。 結(jié)果表明地震反射特征對干酪根含量以及裂縫密度都很敏感。對于富有機質(zhì)頁巖模型,地層厚度增加會使頻變反射系數(shù)中頻率周期變小,干酪根含量增加使富有機質(zhì)頁巖層的速度降低,改變頁巖巖石的各向異性,使得地層的波阻抗差異變大,因此反射波振幅增強。裂縫密度增加,使得頁巖層垂向速度降低十分明顯,,導(dǎo)致頁巖巖石的各向異性增強、波阻抗差異變大,反射波振幅明顯增強。 本文還進行了部分探索性的研究,由于頁巖層也會存在一些微裂隙的結(jié)構(gòu),使得一些頁巖層具有較低的滲透性,滲透率的增加會使地震波波速變小。裂縫或孔隙中充填流體會使得入射波經(jīng)過時產(chǎn)生的有效應(yīng)力減小,這個有效應(yīng)力減小會使得地震波速度變小。
[Abstract]:With the development of the world economy, the demand for oil and gas resources is increasing, and the renewable alternative energy is developing slowly, and the oil and gas resources of unconventional reservoirs are paid more and more attention. Oil and gas in shale reservoir account for a large proportion of oil and gas in unconventional reservoirs, so the study of shale rock physical model is of great significance, and its results can provide theoretical basis for seismic inversion. The physical model of shale rocks has been studied in the field of seismic exploration. There are two types of physical models of shale rocks: one is organic shale model, where organic shale is filled with kerogen in pores (solid organic matter, oil, oil). The other is the shale model of horizontal bedded fractures, which is sedimentary rock, and the horizontal bedding is relatively developed, which contains some micro-fractures, which constitute the passage of oil and gas flow. Both models can describe transversely isotropic shale media. The relationship between reflection coefficient and kerogen content, incidence angle and formation thickness has been discussed in the model of rich organic shale. On this basis, the influence of frequency is added, and the reflection coefficient of organic shale model with different thickness is calculated by propagation matrix algorithm, and the relationship between frequency varying reflection coefficient and incident angle of different kerogen content is obtained. Then the seismic synthetic record of reflected wave is obtained by adding the influence of wavelet. The shale model of horizontal bedding fracture is to apply the existing Hudson fracture model and Schoenberg fracture model to the shale medium, that is, the background rock is shale. Through the propagation matrix algorithm, the formation reflection coefficient of horizontal bedding fracture shale model is calculated, and the relationship between frequency variation reflection coefficient and incident angle under different fracture density is obtained, and the seismic synthetic record of reflected wave is obtained by adding the influence of wavelet. The results show that seismic reflection is sensitive to kerogen content and crack density. For the organic shale model, the increase of formation thickness will reduce the frequency period in the reflection coefficient of frequency variation, and the increase of kerogen content will decrease the velocity of organic matter rich shale layer and change the anisotropy of shale rock. The difference of wave impedance becomes larger, so the amplitude of reflected wave increases. With the increase of fracture density, the vertical velocity of shale layer is obviously decreased, and the anisotropy of shale rock is enhanced, the difference of wave impedance is increased, and the amplitude of reflection wave is obviously increased. Some exploratory studies have also been carried out in this paper. Due to the existence of some micro-fracture structures in shale beds, some shale formations have lower permeability, and the increase of permeability will make the seismic wave velocity smaller. The filling fluid in fracture or pore will reduce the effective stress when the incident wave passes by and the decrease of the effective stress will reduce the velocity of seismic wave.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P631.4;P618.13
【參考文獻】
相關(guān)期刊論文 前10條
1 汪恩華,賀振華,李慶忠;基于薄層的反射系數(shù)譜理論與模型正演[J];成都理工學(xué)院學(xué)報;2001年01期
2 汪宏年,楊善德,常明澈;水平層狀各向異性介質(zhì)中側(cè)向電阻率測井的快速模擬與應(yīng)用[J];測井技術(shù);1998年01期
3 汪玉梅;;低滲透薄互儲層水平縫縫間干擾規(guī)律[J];大慶石油學(xué)院學(xué)報;2008年04期
4 張雪芬;陸現(xiàn)彩;張林曄;劉慶;;頁巖氣的賦存形式研究及其石油地質(zhì)意義[J];地球科學(xué)進展;2010年06期
5 丁文龍;許長春;久凱;李超;曾維特;吳禮明;;泥頁巖裂縫研究進展[J];地球科學(xué)進展;2011年02期
6 李建忠;李登華;董大忠;王社教;;中美頁巖氣成藏條件、分布特征差異研究與啟示[J];中國工程科學(xué);2012年06期
7 張金川;林臘梅;李玉喜;唐玄;朱亮亮;邢雅文;姜生玲;荊鐵亞;楊升宇;;頁巖油分類與評價[J];地學(xué)前緣;2012年05期
8 沈金松;詹林森;馬超;;裂縫等效介質(zhì)模型對裂縫結(jié)構(gòu)和充填介質(zhì)參數(shù)的適應(yīng)性[J];吉林大學(xué)學(xué)報(地球科學(xué)版);2013年03期
9 張廣智;陳懷震;王琪;印興耀;;基于碳酸鹽巖裂縫巖石物理模型的橫波速度和各向異性參數(shù)預(yù)測[J];地球物理學(xué)報;2013年05期
10 孫繼紅;;我國頁巖氣發(fā)展?fàn)顩r與展望[J];大眾科技;2012年11期
本文編號:1869463
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1869463.html