節(jié)理巖體力學(xué)參數(shù)的波動(dòng)測(cè)試法
本文選題:節(jié)理巖體 切入點(diǎn):波形變化 出處:《江西理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:當(dāng)前我國(guó)經(jīng)濟(jì)建設(shè)發(fā)展迅猛,基礎(chǔ)建設(shè)如高速公路、鐵路、工業(yè)與民用建筑、水利水電等工程中會(huì)遇到復(fù)雜的巖體,準(zhǔn)確獲取巖體力學(xué)參數(shù)對(duì)工程設(shè)計(jì)、施工以及建設(shè)維穩(wěn)有著重要作用,為此開展應(yīng)力波在巖體中的傳播規(guī)律研究,提出節(jié)理巖體力學(xué)參數(shù)測(cè)試方法,該研究成果為快捷測(cè)試工程巖體變形參數(shù)提供了途徑。本文針對(duì)不同尺度的節(jié)理巖體,提出相應(yīng)的力學(xué)參數(shù)測(cè)試法,在江西德興銅礦進(jìn)行現(xiàn)場(chǎng)試驗(yàn),測(cè)試了節(jié)理巖體力學(xué)參數(shù)。針對(duì)實(shí)際工程大尺度節(jié)理巖體參數(shù)難以測(cè)試,將節(jié)理巖體等效為Kelvin介質(zhì),采用巖體內(nèi)鉆孔爆破產(chǎn)生應(yīng)力波、地表接收震動(dòng)信號(hào)試驗(yàn)方案,分析應(yīng)力波在巖體的傳播過程,提出基于應(yīng)力波時(shí)空衰減規(guī)律測(cè)試節(jié)理巖體參數(shù)方法,測(cè)試結(jié)果為:節(jié)理巖體黏性系數(shù)為2.18 MPa?s,動(dòng)態(tài)彈性模量為2.52 GPa;采用鉆孔彈模儀原位測(cè)試節(jié)理巖體靜態(tài)彈性模量為1.58 GPa,動(dòng)態(tài)彈性模量是靜態(tài)彈性模量的1.6倍。選取厚度較小的節(jié)理為研究對(duì)象,將節(jié)理等效為標(biāo)準(zhǔn)線性固體模型,研究應(yīng)力波在節(jié)理巖體的傳播規(guī)律,提出基于波形變化規(guī)律測(cè)試節(jié)理法向剛度、法向黏性系數(shù)的方法。研究結(jié)果表明:節(jié)理具有低通濾波特性;波形變化系數(shù)隨著法向剛度、法向黏性系數(shù)的增加而減小;現(xiàn)場(chǎng)試驗(yàn)測(cè)試節(jié)理參數(shù)時(shí),子波有效頻率范圍為800~1200 Hz,采用波形變化系數(shù)量化入射側(cè)計(jì)算波形與實(shí)測(cè)波形差異時(shí),測(cè)試節(jié)理法向剛度為1.03 GPa/m,法向黏性系數(shù)為5.7 MPa?s。針對(duì)力學(xué)參數(shù)漸變型軟弱夾層,將其抽象為損傷度按照二次曲線規(guī)律變化的介質(zhì),建立應(yīng)力波在軟弱夾層的傳播模型,提出軟弱夾層彈性模量測(cè)試方法。研究結(jié)果表明:采用波形變化系數(shù)量化入射側(cè)計(jì)算波形與實(shí)測(cè)波形差異時(shí),隨夾層峰值損傷度的增加,波形變化系數(shù)先減小后增加;波形變化系數(shù)達(dá)到最小值時(shí),確定夾層峰值彈性模量為2.14 GPa;隨子波主頻的增加,夾層動(dòng)態(tài)峰值彈性模量近似線性增加,線性擬合得靜態(tài)峰值彈性模量為0.74 GPa;基于變形相等原則計(jì)算夾層的等效彈性模量為4.24 GPa。
[Abstract]:At present, the economic construction of our country is developing rapidly, and the basic construction such as highway, railway, industrial and civil buildings, water conservancy and hydropower projects will encounter complex rock mass, and accurately obtain the mechanical parameters of rock mass to the engineering design. Construction and construction stability play an important role. For this reason, the propagation law of stress wave in rock mass is studied, and the testing method of mechanical parameters of jointed rock mass is put forward. The research results provide a way to quickly test the deformation parameters of engineering rock mass. In this paper, the corresponding mechanical parameters test method is proposed for different scales of jointed rock mass, and the field test is carried out in Dexing Copper Mine, Jiangxi Province. The mechanical parameters of jointed rock mass are tested. In view of the difficulty of testing large-scale jointed rock mass parameters in practical engineering, the jointed rock mass is equivalent to Kelvin medium, the stress wave is produced by drilling blasting in rock body, and the ground surface receives vibration signal test scheme. By analyzing the propagation process of stress wave in rock mass, a method for measuring the parameters of jointed rock mass based on the law of space-time attenuation of stress wave is proposed. The results are as follows: viscosity coefficient of jointed rock mass is 2.18 MPA? S, dynamic elastic modulus is 2.52 GPa, static elastic modulus of jointed rock mass measured by drilling elastic modulus instrument is 1.58 GPA, dynamic elastic modulus is 1.6 times of static elastic modulus. The joint is equivalent to a standard linear solid model, and the propagation law of stress wave in jointed rock mass is studied. Method of normal viscosity coefficient. The results show that the joint has the characteristics of low pass filtering, the variation coefficient of waveform decreases with the increase of normal stiffness and the normal viscosity coefficient. The effective frequency range of wavelet is 800 ~ 1200Hz.When the waveform variation coefficient is used to quantify the difference between the incident side and the measured waveform, the normal stiffness of the test joint is 1.03 GPA / m, and the normal viscosity coefficient is 5.7 MPA? S. Aiming at the mechanical parameter gradual change type weak intercalation, the stress wave propagation model in the weak intercalation is established by abstracting it as a medium in which the damage degree changes according to the law of quadratic curve. The test method of elastic modulus of weak intercalation is put forward. The results show that the waveform variation coefficient decreases first and then increases with the increase of the damage degree of the intercalation when the wave form is calculated by using the waveform variation coefficient quantifying the incident side to calculate the difference between the waveform and the measured waveform. The peak elastic modulus of the interlayer is determined to be 2.14 GPA when the waveform variation coefficient reaches the minimum value, and the dynamic peak elastic modulus increases linearly with the increase of the main frequency of the wavelet. The linear fitting results show that the static peak elastic modulus is 0.74 GPA and the equivalent elastic modulus based on the principle of deformation equality is 4.24 GPa.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李夕兵;論巖體軟弱結(jié)構(gòu)面對(duì)應(yīng)力波傳播的影響[J];爆炸與沖擊;1993年04期
2 孫成禹;印興耀;;三參數(shù)常Q粘彈性模型構(gòu)造方法研究[J];地震學(xué)報(bào);2007年04期
3 趙海波;陳百軍;李奎周;成德安;;黏彈性介質(zhì)VSP記錄模擬及在估算Q值研究中應(yīng)用[J];地球物理學(xué)報(bào);2011年02期
4 鄭永來(lái),周澄,黃煒,夏頌佑;動(dòng)態(tài)彈性模量隨頻率變化的理論模型及機(jī)理[J];河海大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年03期
5 劉寧;朱維申;李勇;;基于Maxwell模型的有限元粘彈性位移分析[J];礦業(yè)研究與開發(fā);2008年01期
6 王亮清;梁燁;吳瓊;唐輝明;張顯書;;基于彈性波速比的巖體強(qiáng)度參數(shù)估算方法[J];煤田地質(zhì)與勘探;2010年06期
7 張成良;趙曉霞;;輝綠巖在加、卸荷條件下的巖體力學(xué)特性試驗(yàn)[J];煤炭學(xué)報(bào);2011年S2期
8 尹尚先;王尚旭;魏建新;狄?guī)妥?;弱連接界面彈性波波動(dòng)規(guī)律研究[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2007年03期
9 胡卸文,鐘沛林;似層狀結(jié)構(gòu)巖體變形參數(shù)的軟弱層帶厚度效應(yīng)[J];巖石力學(xué)與工程學(xué)報(bào);2002年09期
10 黃書嶺;馮夏庭;張傳慶;;巖體力學(xué)參數(shù)的敏感性綜合評(píng)價(jià)分析方法研究[J];巖石力學(xué)與工程學(xué)報(bào);2008年S1期
,本文編號(hào):1648361
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1648361.html