蘇南氣田儲(chǔ)層各向異性的偶極橫波測(cè)井研究
發(fā)布時(shí)間:2018-03-03 07:18
本文選題:蘇南氣田 切入點(diǎn):偶極橫波測(cè)井 出處:《西南石油大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:蘇南氣田二疊系山西組地層各向異性明顯,常規(guī)測(cè)井不能準(zhǔn)確描述地層各向異性,有時(shí)導(dǎo)致常規(guī)測(cè)井解釋結(jié)論與試油結(jié)果相矛盾。為分析儲(chǔ)層各向異性的原因,確定地層最大、最小水平主應(yīng)力方位,判斷儲(chǔ)層裂縫的發(fā)育程度、方位和有效性,本文結(jié)合工區(qū)地質(zhì)構(gòu)造和儲(chǔ)層特征,根據(jù)偶極橫波測(cè)井資料,利用Aflord分析法分離快慢橫波波形,反演分析法提取快慢橫波時(shí)差,并結(jié)合FMI成像測(cè)井資料分析蘇南氣田二疊系山西組儲(chǔ)層各向異性,重點(diǎn)開(kāi)展了五個(gè)方面的分析與研究工作:①影響偶極橫波測(cè)井?dāng)?shù)據(jù)品質(zhì)的主要因素分析;②偶極橫波測(cè)井波形數(shù)據(jù)預(yù)處理方法;③快速高精度的三波時(shí)差(縱波、橫波和斯通利波時(shí)差)提取技術(shù)研究;④快慢橫波波形分離與快慢橫波時(shí)差提取方法研究;⑤工區(qū)儲(chǔ)層各向異性分析與應(yīng)用研究。并獲得以下研究成果和認(rèn)識(shí): (1)偶極橫波測(cè)井?dāng)?shù)據(jù)品質(zhì)易受到相位移動(dòng)、頻率、周波跳躍、噪聲干擾、源距和間距的影響,為了消除這些影響,需要對(duì)波形數(shù)據(jù)開(kāi)展增益控制、濾波及歸一化處理等工作,并總結(jié)了能有效提高信噪比的波形預(yù)處理方法。 (2)采用變閡值首波檢測(cè)方法及時(shí)間慢度相關(guān)法,快速且有效地提取高精度的三波時(shí)差。與GeoFrame軟件提取結(jié)果對(duì)比,曲線形狀重合度較高、幅值接近。 (3)通過(guò)對(duì)快慢橫波波形分離及其時(shí)差提取方法研究,利用反演分析法大大降低了各向異性的計(jì)算誤差,準(zhǔn)確的計(jì)算出地層各向異性大小和方位。研究表明蘇南氣田山西組儲(chǔ)層各向異性系數(shù)在11%-16%之間,各向異性較強(qiáng)。 (4)根據(jù)工區(qū)多井處理得到的各向異性大小和方位,結(jié)合FMI電成像資料,對(duì)工區(qū)山西組儲(chǔ)層裂縫和地應(yīng)力各向異性進(jìn)行分析。工區(qū)地層最大水平主應(yīng)力方位為N85°E,儲(chǔ)層裂縫方位為近東西向,裂縫走向和最大水平主應(yīng)力方向夾角小于45°,將有利于裂縫張開(kāi)而形成有效裂縫。 (5)對(duì)比巖石力學(xué)實(shí)驗(yàn)測(cè)試結(jié)果,利用各向異性巖石力學(xué)模型計(jì)算TIV地層垂向和橫向的楊氏模量和泊松比是切實(shí)可行的。由此,建立了基于3D各向異性的巖石力學(xué)參數(shù)計(jì)算模型。 通過(guò)上述一系列的深入研究、軟件編制及資料處理分析,形成了一套基于偶極橫波測(cè)井資料提取三波時(shí)差、計(jì)算各向異性大小和方位、確定地層最大和最小水平主應(yīng)力方位以及判斷儲(chǔ)層裂縫的發(fā)育程度、方位及有效性的方法與技術(shù)。
[Abstract]:The formation anisotropy of the Permian Shanxi formation in Sunan gas field is obvious, and the conventional logging can not accurately describe the formation anisotropy, which sometimes leads to the contradiction between the conventional log interpretation conclusion and the oil test result. In order to analyze the reason of reservoir anisotropy, it is determined that the formation is the largest. The minimum horizontal principal stress azimuth is used to judge the development degree, orientation and validity of reservoir fractures. According to dipole shear wave logging data and combined with geological structure and reservoir characteristics in the working area, the fast and slow S-wave waveforms are separated by Aflord method. The inversion analysis method is used to extract the fast and slow S-wave time difference, and the anisotropy of the Permian Shanxi formation reservoir in Sunan gas field is analyzed by combining with the FMI imaging logging data. The main factors affecting the data quality of dipole shear wave logging data are analyzed in five aspects. The data preprocessing method of dipole shear wave logging data is a fast and high precision three-wave time difference (P-wave). Research on the extraction technique of S-wave and Stonley Wave) the separation of fast and slow S-wave waveforms and the method of extracting the time-difference of fast-slow S-wave; the anisotropy analysis and application of reservoir in area No. 5. The following research results and understandings are obtained:. The dipole S-wave logging data quality is easily affected by phase shift, frequency, Zhou Bo jump, noise interference, source distance and spacing. In order to eliminate these effects, it is necessary to carry out gain control, filtering and normalization of waveform data. The waveform preprocessing method which can improve signal-to-noise ratio (SNR) is summarized. (2) the method of first wave detection with variable threshold value and time-slowness correlation method are used to quickly and effectively extract the high-precision three-wave time difference. Compared with the result of GeoFrame software, the shape coincidence of the curve is high and the amplitude is close. 3) by studying the method of fast and slow S-wave wave separation and time difference extraction, the calculation error of anisotropy is greatly reduced by using inversion analysis method. The study shows that the anisotropy coefficient of Shanxi formation in Sunan gas field is between 11% and 16%, and the anisotropy is strong. According to the anisotropy and azimuth obtained by multi-well processing in the working area, combined with the FMI electrical imaging data, The reservoir fractures and in-situ stress anisotropy of Shanxi formation are analyzed. The maximum horizontal principal stress azimuth is N85 擄E, and the reservoir fracture orientation is nearly east-west. The angle between the fracture strike and the maximum horizontal principal stress direction is less than 45 擄, which will facilitate the crack to open and form an effective fracture. Compared with the experimental results of rock mechanics, it is feasible to calculate the Young's modulus and Poisson's ratio in vertical and transverse directions of TIV strata by using anisotropic rock mechanics model. Therefore, a rock mechanics parameter calculation model based on 3D anisotropy is established. Through a series of in-depth research, software programming and data processing and analysis, a set of three wave moveout based on dipole shear wave logging data is formed to calculate the anisotropy and azimuth. The methods and techniques of determining the maximum and minimum horizontal principal stress azimuth of formation and judging the development degree, orientation and validity of reservoir fractures.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TE311;P631.81
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈文略,史,
本文編號(hào):1560048
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1560048.html
最近更新
教材專(zhuān)著