Si雜質(zhì)擴(kuò)散誘導(dǎo)InGaAs/AlGaAs量子阱混雜的研究(英文)
發(fā)布時(shí)間:2020-12-16 04:34
光學(xué)災(zāi)變損傷(COD)常發(fā)生于量子阱半導(dǎo)體激光器的前腔面處,極大地影響了激光器的出光功率及壽命。通過雜質(zhì)誘導(dǎo)量子阱混雜技術(shù)使腔面區(qū)波長(zhǎng)藍(lán)移來制備非吸收窗口是抑制腔面COD的有效手段,也是一種高效率、低成本方法。本文選擇了Si雜質(zhì)作為量子阱混雜的誘導(dǎo)源,使用金屬有機(jī)化學(xué)氣相沉積設(shè)備生長(zhǎng)了InGaAs/AlGaAs量子阱半導(dǎo)體激光器外延結(jié)構(gòu)、Si雜質(zhì)擴(kuò)散層及Si3N4保護(hù)層。熱退火處理后,Si雜質(zhì)擴(kuò)散誘導(dǎo)量子阱區(qū)和壘區(qū)材料互擴(kuò)散,量子阱禁帶變寬,輸出波長(zhǎng)發(fā)生藍(lán)移。退火會(huì)影響外延片的表面形貌,而表面形貌則可能會(huì)影響后續(xù)封裝工藝中電極的制備。結(jié)合光學(xué)顯微鏡及光致發(fā)光譜的測(cè)試結(jié)果,得到825℃/2 h退火條件下約93 nm的最大波長(zhǎng)藍(lán)移量,也證明退火對(duì)表面形貌的改變,不會(huì)影響波長(zhǎng)藍(lán)移效果及后續(xù)電極工藝。
【文章來源】:中國(guó)光學(xué). 2020年01期 北大核心
【文章頁數(shù)】:14 頁
【部分圖文】:
B組樣品退火前后的表面形貌。
To deal with COD, it is necessary to understand the mechanism of COD at first. As shown in Fig. 2, the following two items result in COD: one is the large optical power density of the cavity surface and the other is the absorption of light by non-radiative recombination centers formed by surface state and interface state[10]. Both can increase the temperature at the cavity surface, and the temperature rise will narrow the band gap of the cavity surface and result in red shift of the wavelength, and the light absorption will be enhanced. Then the temperature will continue to rise, and the vicious cycle will eventually result in COD.圖2 產(chǎn)生COD的機(jī)制
The schematic diagram of the epitaxial structure of InGaAs/AlGaAs used in this paper is shown in Fig. 3. The detailed information such as thickness and doping is listed in Table 1. This semiconductor laser diode epitaxial wafer was independently design-ed by our research group and grown using the MOCVD equipment of Aixtron AIX-200 system.表1 InGaAs/AlGaAs量子阱激光器的外延結(jié)構(gòu)及相應(yīng)參數(shù)Tab.1 Epitaxial structure and parameters of InGaAs/AlGaAs QW LD NO. Layer Material Composition Thickness Dopant 13 contract P-GaAs _ 150 nm C/P++ 12 grin p-AlxGaAs 0.37-0.1 67 nm C/P+ 11 cladding p-AlxGaAs 0.37 1100 nm C/P 10 grin p-AlxGaAs 0.255-0.37 120nm C/P 9 upper waveguide p-AlxGaAs 0.255 380 nm C/P 8 grin p-AlxGaAs 0.1-0.255 30 nm Un. 7 QW InxGaAs 0.267 7.4 nm Un. 6 grin n-AlxGaAs 0.255-0.1 30 nm Un. 5 lower waveguide n-AlxGaAs 0.255 800 nm Si/N 4 grin n-AlxGaAs 0.31-0.255 100 nm Si/N 3 cladding n-AlxGaAs 0.31 1460 nm Si/N 2 buffer n-GaAs _ 500 nm Si/N 1 substrate n-GaAs _ 450 μm
【參考文獻(xiàn)】:
期刊論文
[1]基于GaAs膜的GaInP/AlGaInP無雜質(zhì)空位擴(kuò)散誘導(dǎo)量子阱混雜的研究(英文)[J]. 田偉男,熊聰,王鑫,劉素平,馬驍宇. 發(fā)光學(xué)報(bào). 2018(08)
[2]12 W高功率高可靠性915 nm半導(dǎo)體激光器設(shè)計(jì)與制作[J]. 仇伯倉,胡海,汪衛(wèi)敏,劉文斌,白雪. 中國(guó)光學(xué). 2018(04)
[3]基于SiO2薄膜的915nm半導(dǎo)體激光器的無雜質(zhì)空位誘導(dǎo)量子阱混合研究[J]. 王鑫,趙懿昊,朱凌妮,侯繼達(dá),馬驍宇,劉素平. 光子學(xué)報(bào). 2018(03)
[4]Experimental investigation of loss and gain characteristics of an abnormal InxGa1-xAs/GaAs quantum well structure[J]. 賈燕,于慶南,李芳,王明清,盧葦,張建,張星,寧永強(qiáng),吳堅(jiān). Chinese Optics Letters. 2018(01)
[5]InGaAs/AlGaAs量子阱紅外探測(cè)器中勢(shì)壘生長(zhǎng)溫度的研究[J]. 霍大云,石震武,張偉,唐沈立,彭長(zhǎng)四. 物理學(xué)報(bào). 2017(06)
[6]InGaAs/GaAs應(yīng)變量子阱的發(fā)光特性研究[J]. 戴銀,李林,苑匯帛,喬忠良,孔令沂,谷雷,劉洋,李特,曲軼,劉國(guó)軍. 光學(xué)學(xué)報(bào). 2014(11)
[7]High-strain InGaAs/GaAs quantum well grown by MOCVD[J]. 谷雷,李林,喬忠良,孔令沂,苑匯帛,劉洋,戴銀,薄報(bào)學(xué),劉國(guó)軍. Chinese Optics Letters. 2014(10)
[8]基于循環(huán)退火技術(shù)的InGaAs/AlGaAs量子阱混雜[J]. 林盛杰,李建軍,何林杰,鄧軍,韓軍. 光電子.激光. 2014(08)
[9]GaAs中Si擴(kuò)散機(jī)制的研究[J]. 方小華,鮑希茂. 半導(dǎo)體學(xué)報(bào). 1996(12)
博士論文
[1]高功率半導(dǎo)體激光器抗COD關(guān)鍵技術(shù)研究[D]. 周路.長(zhǎng)春理工大學(xué) 2014
碩士論文
[1]用量子阱混合技術(shù)提高大功率半導(dǎo)體激光器腔面的COD閾值[D]. 彭海濤.河北工業(yè)大學(xué) 2007
本文編號(hào):2919538
【文章來源】:中國(guó)光學(xué). 2020年01期 北大核心
【文章頁數(shù)】:14 頁
【部分圖文】:
B組樣品退火前后的表面形貌。
To deal with COD, it is necessary to understand the mechanism of COD at first. As shown in Fig. 2, the following two items result in COD: one is the large optical power density of the cavity surface and the other is the absorption of light by non-radiative recombination centers formed by surface state and interface state[10]. Both can increase the temperature at the cavity surface, and the temperature rise will narrow the band gap of the cavity surface and result in red shift of the wavelength, and the light absorption will be enhanced. Then the temperature will continue to rise, and the vicious cycle will eventually result in COD.圖2 產(chǎn)生COD的機(jī)制
The schematic diagram of the epitaxial structure of InGaAs/AlGaAs used in this paper is shown in Fig. 3. The detailed information such as thickness and doping is listed in Table 1. This semiconductor laser diode epitaxial wafer was independently design-ed by our research group and grown using the MOCVD equipment of Aixtron AIX-200 system.表1 InGaAs/AlGaAs量子阱激光器的外延結(jié)構(gòu)及相應(yīng)參數(shù)Tab.1 Epitaxial structure and parameters of InGaAs/AlGaAs QW LD NO. Layer Material Composition Thickness Dopant 13 contract P-GaAs _ 150 nm C/P++ 12 grin p-AlxGaAs 0.37-0.1 67 nm C/P+ 11 cladding p-AlxGaAs 0.37 1100 nm C/P 10 grin p-AlxGaAs 0.255-0.37 120nm C/P 9 upper waveguide p-AlxGaAs 0.255 380 nm C/P 8 grin p-AlxGaAs 0.1-0.255 30 nm Un. 7 QW InxGaAs 0.267 7.4 nm Un. 6 grin n-AlxGaAs 0.255-0.1 30 nm Un. 5 lower waveguide n-AlxGaAs 0.255 800 nm Si/N 4 grin n-AlxGaAs 0.31-0.255 100 nm Si/N 3 cladding n-AlxGaAs 0.31 1460 nm Si/N 2 buffer n-GaAs _ 500 nm Si/N 1 substrate n-GaAs _ 450 μm
【參考文獻(xiàn)】:
期刊論文
[1]基于GaAs膜的GaInP/AlGaInP無雜質(zhì)空位擴(kuò)散誘導(dǎo)量子阱混雜的研究(英文)[J]. 田偉男,熊聰,王鑫,劉素平,馬驍宇. 發(fā)光學(xué)報(bào). 2018(08)
[2]12 W高功率高可靠性915 nm半導(dǎo)體激光器設(shè)計(jì)與制作[J]. 仇伯倉,胡海,汪衛(wèi)敏,劉文斌,白雪. 中國(guó)光學(xué). 2018(04)
[3]基于SiO2薄膜的915nm半導(dǎo)體激光器的無雜質(zhì)空位誘導(dǎo)量子阱混合研究[J]. 王鑫,趙懿昊,朱凌妮,侯繼達(dá),馬驍宇,劉素平. 光子學(xué)報(bào). 2018(03)
[4]Experimental investigation of loss and gain characteristics of an abnormal InxGa1-xAs/GaAs quantum well structure[J]. 賈燕,于慶南,李芳,王明清,盧葦,張建,張星,寧永強(qiáng),吳堅(jiān). Chinese Optics Letters. 2018(01)
[5]InGaAs/AlGaAs量子阱紅外探測(cè)器中勢(shì)壘生長(zhǎng)溫度的研究[J]. 霍大云,石震武,張偉,唐沈立,彭長(zhǎng)四. 物理學(xué)報(bào). 2017(06)
[6]InGaAs/GaAs應(yīng)變量子阱的發(fā)光特性研究[J]. 戴銀,李林,苑匯帛,喬忠良,孔令沂,谷雷,劉洋,李特,曲軼,劉國(guó)軍. 光學(xué)學(xué)報(bào). 2014(11)
[7]High-strain InGaAs/GaAs quantum well grown by MOCVD[J]. 谷雷,李林,喬忠良,孔令沂,苑匯帛,劉洋,戴銀,薄報(bào)學(xué),劉國(guó)軍. Chinese Optics Letters. 2014(10)
[8]基于循環(huán)退火技術(shù)的InGaAs/AlGaAs量子阱混雜[J]. 林盛杰,李建軍,何林杰,鄧軍,韓軍. 光電子.激光. 2014(08)
[9]GaAs中Si擴(kuò)散機(jī)制的研究[J]. 方小華,鮑希茂. 半導(dǎo)體學(xué)報(bào). 1996(12)
博士論文
[1]高功率半導(dǎo)體激光器抗COD關(guān)鍵技術(shù)研究[D]. 周路.長(zhǎng)春理工大學(xué) 2014
碩士論文
[1]用量子阱混合技術(shù)提高大功率半導(dǎo)體激光器腔面的COD閾值[D]. 彭海濤.河北工業(yè)大學(xué) 2007
本文編號(hào):2919538
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2919538.html
最近更新
教材專著