無(wú)條件穩(wěn)定的電磁場(chǎng)區(qū)域分解時(shí)域有限差分方法及應(yīng)用研究
發(fā)布時(shí)間:2020-10-16 23:24
在計(jì)算電磁學(xué)領(lǐng)域,時(shí)域有限差分(finite-difference time-domain,FDTD)法有著目前還不能被其他數(shù)值計(jì)算方法所取代的地位,至今仍吸引著大量國(guó)內(nèi)外研究人員和學(xué)者不斷地探索和完善。隨著科技的發(fā)展和進(jìn)步,在電磁場(chǎng)與微波技術(shù)領(lǐng)域需要求解的電磁模型也越來(lái)越復(fù)雜并且趨于多尺度化;跓o(wú)條件穩(wěn)定的快速時(shí)域數(shù)值方法在求解包含精細(xì)結(jié)構(gòu)的多尺度電磁問(wèn)題時(shí)具有傳統(tǒng)FDTD所不具備的顯著優(yōu)勢(shì),而對(duì)于高性能無(wú)條件穩(wěn)定FDTD法的研究,仍然需要進(jìn)一步深入探索,主要體現(xiàn)在兩個(gè)方面:首先,在理論方法方面,既需要提出基于電磁場(chǎng)區(qū)域分解技術(shù)的更高精度、更高效率的隱式無(wú)條件穩(wěn)定FDTD法,也需要繼續(xù)深入研究基于局部亞網(wǎng)格技術(shù)的顯式無(wú)條件穩(wěn)定FDTD法以突破顯式步進(jìn)時(shí)穩(wěn)定性條件的限制并完善局部亞網(wǎng)格技術(shù);其次,在工程應(yīng)用方面,需要將快速的無(wú)條件穩(wěn)定FDTD法用于求解新型電磁工程問(wèn)題。本博士學(xué)位論文著眼于無(wú)條件穩(wěn)定的電磁場(chǎng)快速FDTD法及其應(yīng)用研究:在理論上較深入、系統(tǒng)地研究了基于電磁場(chǎng)區(qū)域分解技術(shù)的隱式無(wú)條件穩(wěn)定FDTD法和基于局部亞網(wǎng)格技術(shù)的顯式無(wú)條件穩(wěn)定FDTD法;并且進(jìn)一步擴(kuò)展了快速FDTD的工程應(yīng)用范圍,將其用于數(shù)值仿真時(shí)間反演電磁波的傳播特性、周期結(jié)構(gòu)金屬光柵的超強(qiáng)光透射和色散土壤中的探地雷達(dá)等復(fù)雜的電大尺寸、多尺度電磁問(wèn)題。本文的主要研究?jī)?nèi)容分為以下四個(gè)部分。第一部分,研究了基于加權(quán)Laguerre多項(xiàng)式(weighted Laguerre polynomials,WLPs)的區(qū)域分解隱式無(wú)條件穩(wěn)定FDTD法。首先,提出了一種基于節(jié)點(diǎn)變量的高效率區(qū)域分解WLP-FDTD,完善了電磁場(chǎng)隱式FDTD法中區(qū)域分解技術(shù)的理論體系,并將其用于求解二維電磁帶隙結(jié)構(gòu)的S參數(shù)。其次,在區(qū)域分解WLP-FDTD中引入了高階完全匹配層(perfectly matched layer,PML)吸收邊界條件,并以多目標(biāo)遺傳算法優(yōu)化選擇高階PML中的關(guān)鍵參數(shù),使得提出方法可以精確、高效地求解和仿真開(kāi)放空間的電磁問(wèn)題。最后,將提出的區(qū)域分解WLP-FDTD用于時(shí)間反演電磁波傳播特性的求解,主要包括:時(shí)空聚焦和遠(yuǎn)場(chǎng)超分辨率聚焦等。第二部分,研究了隱式無(wú)條件穩(wěn)定Crank-Nicolson(CN)FDTD法中的區(qū)域分解技術(shù)。首先,在CN-FDTD中引入了區(qū)域分解技術(shù)以提高仿真和計(jì)算復(fù)雜、多尺度電磁問(wèn)題時(shí)的效率,并在區(qū)域分解CN-FDTD中給出了Drude色散模型、不分裂場(chǎng)PML吸收邊界條件和周期邊界條件,通過(guò)矩陣帶寬壓縮技術(shù)實(shí)現(xiàn)區(qū)域分解技術(shù)在CN-FDTD中的高效實(shí)施。其次,區(qū)域分解CN-FDTD的工程應(yīng)用:數(shù)值仿真并分析了周期結(jié)構(gòu)金屬光柵的超強(qiáng)光透射現(xiàn)象。第三部分,研究了基于空間濾波技術(shù)的局部亞網(wǎng)格FDTD法。以空間濾波技術(shù)實(shí)現(xiàn)的顯式無(wú)條件穩(wěn)定FDTD,在保持顯式步進(jìn)的前提下增大了時(shí)間步長(zhǎng),顯著提高了傳統(tǒng)FDTD在仿真電大尺寸、多尺度電磁問(wèn)題時(shí)的效率。首先,提出了三維空間濾波局部亞網(wǎng)格FDTD法,理論分析主要包括:解釋空間濾波技術(shù)的基本原理、實(shí)現(xiàn)Debye色散模型的數(shù)值求解和不分裂場(chǎng)單軸PML(uniaxial,UPML)吸收邊界條件的公式推導(dǎo)。其次,在三維計(jì)算空間求解了實(shí)際色散土壤中的探地雷達(dá)問(wèn)題。最后,基于時(shí)間反演電磁波的時(shí)空聚焦,分別在理想電導(dǎo)體(perfectly electric conductor,PEC)邊界和PML邊界下實(shí)現(xiàn)了任意電磁場(chǎng)的空間賦形。第四部分,研究了基于顯式FDTD和隱式無(wú)條件穩(wěn)定CN-FDTD的混合局部亞網(wǎng)格FDTD法。首先,提出了混合局部亞網(wǎng)格FDTD法的理論體系,分別實(shí)現(xiàn)了二維和三維CN-FDTD對(duì)Debye色散模型的數(shù)值求解,并在三維CN-FDTD中詳細(xì)推導(dǎo)了不分裂場(chǎng)UPML吸收邊界條件的求解公式和區(qū)域分解技術(shù)在三維空間的高效實(shí)施。其次,將提出的高效混合局部亞網(wǎng)格FDTD法用于模擬和計(jì)算色散土壤中的探地雷達(dá)問(wèn)題。
【學(xué)位單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2018
【中圖分類(lèi)】:O441.4;O241.3
【部分圖文】:
電子科技大學(xué)博士學(xué)位論文格;2、時(shí)間上,為了保證數(shù)值計(jì)算的穩(wěn)定性,時(shí)間步長(zhǎng)依賴(lài)于最小空間步長(zhǎng),需要滿(mǎn)足 Courant-Frederick-Levy(CFL)時(shí)間穩(wěn)定性條件[10]。當(dāng)求解如圖 1-1 所示包含精細(xì)結(jié)構(gòu)的電磁問(wèn)題時(shí),為了準(zhǔn)確模擬電磁模型的物理結(jié)構(gòu),最小空間網(wǎng)格的劃分由微結(jié)構(gòu)決定,很小的時(shí)間步長(zhǎng)和很大的時(shí)間步進(jìn)數(shù)目均使得傳統(tǒng) FDTD 的仿真時(shí)間非常長(zhǎng)甚至難以接受。為了減弱甚至消除 CFL 穩(wěn)定性條件對(duì)時(shí)間步長(zhǎng)的限制,提高多尺度電磁問(wèn)題的計(jì)算效率,目前主要有兩條途徑。
第一章 緒論模式的階數(shù)等。另一方面,從數(shù)學(xué)角度分析 CFL 穩(wěn)定性條件對(duì)傳統(tǒng) FDTD 時(shí)間步長(zhǎng)限制的根本原因,通過(guò)預(yù)處理過(guò)程找到某一特定時(shí)間步長(zhǎng)對(duì)應(yīng)的穩(wěn)定特征?臻g或通過(guò)直接分析特征模并找出不穩(wěn)定的特征值后將其移除,從而實(shí)現(xiàn)了顯式無(wú)條件穩(wěn)定 FDTD 法[34-36]。但這種方法的預(yù)處理過(guò)程比較復(fù)雜且耗費(fèi)較多的仿真時(shí)間,因此需進(jìn)一步提高求解復(fù)雜電磁問(wèn)題時(shí)的效率。
電子科技大學(xué)博士學(xué)位論文2、電磁場(chǎng)中區(qū)域分解技術(shù)眾所周知,區(qū)域分解思想最早起源于數(shù)學(xué)領(lǐng)域。早在 1870 年,德國(guó)數(shù)學(xué)家H. A. Schwarz 為了采用交替法來(lái)論證兩個(gè)互相重疊域的合集上 Laplace 方程Dirichlet 問(wèn)題解的存在性時(shí)就已經(jīng)引入了區(qū)域分解的思想,后來(lái)被稱(chēng)為 Schwarz 方法[29]。上世紀(jì)末本世紀(jì)初,電磁場(chǎng)與微波技術(shù)領(lǐng)域的科學(xué)工作者發(fā)現(xiàn)區(qū)域分解在求解復(fù)雜問(wèn)題時(shí)的優(yōu)勢(shì)后,也逐漸將基于數(shù)學(xué)上的區(qū)域分解方法應(yīng)用于求解電磁場(chǎng)問(wèn)題[28,125],極大地提高了電磁場(chǎng)數(shù)值方法的計(jì)算效率。區(qū)域分解技術(shù)的基本思想是將原始不容易直接求解的大問(wèn)題首先劃分成若干小問(wèn)題(如圖 1-3 所示),再獨(dú)立、并行求解每個(gè)相對(duì)容易求解的小問(wèn)題[126,127],主要分為 Schwarz[128,129]方法和Schur Complement[130-132]方法兩種。區(qū)域分解技術(shù)在計(jì)算電磁學(xué)三大主流方法中目前都有應(yīng)用,并且仍在不斷發(fā)展和完善;然而近幾十年來(lái)應(yīng)用最多、發(fā)展最快的則是 FEM 中區(qū)域分解技術(shù)的研究[125,133]。
【參考文獻(xiàn)】
本文編號(hào):2843922
【學(xué)位單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2018
【中圖分類(lèi)】:O441.4;O241.3
【部分圖文】:
電子科技大學(xué)博士學(xué)位論文格;2、時(shí)間上,為了保證數(shù)值計(jì)算的穩(wěn)定性,時(shí)間步長(zhǎng)依賴(lài)于最小空間步長(zhǎng),需要滿(mǎn)足 Courant-Frederick-Levy(CFL)時(shí)間穩(wěn)定性條件[10]。當(dāng)求解如圖 1-1 所示包含精細(xì)結(jié)構(gòu)的電磁問(wèn)題時(shí),為了準(zhǔn)確模擬電磁模型的物理結(jié)構(gòu),最小空間網(wǎng)格的劃分由微結(jié)構(gòu)決定,很小的時(shí)間步長(zhǎng)和很大的時(shí)間步進(jìn)數(shù)目均使得傳統(tǒng) FDTD 的仿真時(shí)間非常長(zhǎng)甚至難以接受。為了減弱甚至消除 CFL 穩(wěn)定性條件對(duì)時(shí)間步長(zhǎng)的限制,提高多尺度電磁問(wèn)題的計(jì)算效率,目前主要有兩條途徑。
第一章 緒論模式的階數(shù)等。另一方面,從數(shù)學(xué)角度分析 CFL 穩(wěn)定性條件對(duì)傳統(tǒng) FDTD 時(shí)間步長(zhǎng)限制的根本原因,通過(guò)預(yù)處理過(guò)程找到某一特定時(shí)間步長(zhǎng)對(duì)應(yīng)的穩(wěn)定特征?臻g或通過(guò)直接分析特征模并找出不穩(wěn)定的特征值后將其移除,從而實(shí)現(xiàn)了顯式無(wú)條件穩(wěn)定 FDTD 法[34-36]。但這種方法的預(yù)處理過(guò)程比較復(fù)雜且耗費(fèi)較多的仿真時(shí)間,因此需進(jìn)一步提高求解復(fù)雜電磁問(wèn)題時(shí)的效率。
電子科技大學(xué)博士學(xué)位論文2、電磁場(chǎng)中區(qū)域分解技術(shù)眾所周知,區(qū)域分解思想最早起源于數(shù)學(xué)領(lǐng)域。早在 1870 年,德國(guó)數(shù)學(xué)家H. A. Schwarz 為了采用交替法來(lái)論證兩個(gè)互相重疊域的合集上 Laplace 方程Dirichlet 問(wèn)題解的存在性時(shí)就已經(jīng)引入了區(qū)域分解的思想,后來(lái)被稱(chēng)為 Schwarz 方法[29]。上世紀(jì)末本世紀(jì)初,電磁場(chǎng)與微波技術(shù)領(lǐng)域的科學(xué)工作者發(fā)現(xiàn)區(qū)域分解在求解復(fù)雜問(wèn)題時(shí)的優(yōu)勢(shì)后,也逐漸將基于數(shù)學(xué)上的區(qū)域分解方法應(yīng)用于求解電磁場(chǎng)問(wèn)題[28,125],極大地提高了電磁場(chǎng)數(shù)值方法的計(jì)算效率。區(qū)域分解技術(shù)的基本思想是將原始不容易直接求解的大問(wèn)題首先劃分成若干小問(wèn)題(如圖 1-3 所示),再獨(dú)立、并行求解每個(gè)相對(duì)容易求解的小問(wèn)題[126,127],主要分為 Schwarz[128,129]方法和Schur Complement[130-132]方法兩種。區(qū)域分解技術(shù)在計(jì)算電磁學(xué)三大主流方法中目前都有應(yīng)用,并且仍在不斷發(fā)展和完善;然而近幾十年來(lái)應(yīng)用最多、發(fā)展最快的則是 FEM 中區(qū)域分解技術(shù)的研究[125,133]。
【參考文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 何國(guó)強(qiáng);基于Laguerre多項(xiàng)式的電磁場(chǎng)區(qū)域分解時(shí)域算法[D];電子科技大學(xué);2013年
本文編號(hào):2843922
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2843922.html
最近更新
教材專(zhuān)著