慣性行人導(dǎo)航系統(tǒng)的算法研究
[Abstract]:The common navigation system, in navigation satellite or ground beacon failure environment, navigation blind. Inertial navigation system, as an autonomous navigation system, has good concealment, stability and anti-interference. It can work all day, all weather, and all over the area. In recent years, inertial navigation system has become a research hotspot in the field of pedestrian navigation. However, pure inertial navigation has the characteristics of continuous accumulation of navigation errors, it is necessary to design an effective error correction method to improve the long-term navigation accuracy of the system. Based on the micro inertial sensor with small size and low cost, combined with the periodic characteristics of foot motion, this paper studies the application of zero-velocity correction assisted inertial navigation technology to pedestrian navigation. The main contents are as follows: 1. The initial alignment technology of strapdown inertial navigation system under static base is studied. Initial alignment is one of the key technologies of inertial navigation system, and its main purpose is to determine the initial conditions of the system. Based on the concept of error angle of Euler platform, this paper describes the misalignment angle between the theoretical navigation coordinate system and the computational navigation coordinate system, and deduces the systematic error model of the strapdown inertial navigation system under different misalignment angles. It lays a theoretical foundation for the research of error correction algorithm in this paper. 2. The gait detection method based on dynamic threshold and clustering analysis is studied. Because the existing gait detection methods do not fully and reasonably consider the influence of measurement value fluctuation on gait detection, most of the existing gait detection methods have some shortcomings, such as inaccurate detection results and sensitivity to detection parameters, etc. Furthermore, the correctness and effectiveness of the subsequent zero-speed correction method are affected. In this paper, an adaptive gait detection method based on clustering analysis is proposed by analyzing the function of each detection parameter and the coupling relationship between them in detail. This method is an improved flat area detection method. It can overcome the shortcomings of the existing detection methods and expand the feasible parameter space of the detection methods, and then improve the accuracy and reliability of gait detection. 3. A navigation error estimation method based on Kalman filter is studied. In the zero-velocity correction, the Kalman filtering algorithm can make full use of the coupling relationship between velocity error, attitude error and position error, and estimate and correct more navigation errors. In order to reduce the computational complexity and high order truncation error in the filtering process, to avoid the introduction of additional modeling errors and to reduce the possibility of filtering divergence, the original system equations are decomposed by indirect filtering principle. Then combining with the concrete application of pedestrian navigation, the decomposed error subsystem is simplified, and the reliability of zero velocity observation in support phase is analyzed. The sensor error is not modeled and estimated as an augmented state vector in the filtering process. 4 the navigation error estimation method based on fixed interval smoother is studied. The Kalman filtering algorithm can only estimate the navigation error in the support phase, and it is easy to cause the sudden change of navigation information when the swing phase is transitioned to the supporting phase. The fixed-interval smoothing algorithm can estimate the navigation error in the whole gait cycle and realize the steady transition of the gait phase, thus improving the accuracy and stability of the system. In order to make the smoothing algorithm meet the requirements of on-line operation, a reduced order smoothing filtering algorithm without modeling and estimating the position error and sensor error is designed without reducing the performance of the system. The error estimation, smoothing and correction of navigation error are carried out step by step to achieve the effect of quasi-real-time smoothing estimation.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TN713
【相似文獻】
相關(guān)期刊論文 前10條
1 冷曉艷;;空中偵察圖像連續(xù)拼接中的平滑算法研究[J];計算機工程與科學(xué);2007年02期
2 盧捍華;;數(shù)字信號測量中的平滑算法[J];南京郵電學(xué)院學(xué)報;1988年02期
3 殷德奎,雷春,張保民;基于圖像特征的多元平滑算法[J];激光與紅外;2000年01期
4 沈志光;;數(shù)字圖像平滑算法的探究[J];科學(xué)大眾;2006年04期
5 郭武;吳義堅;;基于時域單元融合的拼接平滑算法[J];中文信息學(xué)報;2006年05期
6 李欣;孫懋珩;;穩(wěn)健平滑算法的改進策略[J];中國圖象圖形學(xué)報;2008年04期
7 秦超英,戴冠中;估計動態(tài)系統(tǒng)噪聲的平滑算法[J];控制理論與應(yīng)用;1993年02期
8 周焰,王祖喜,李德華;基于弧長參數(shù)的曲線自適應(yīng)平滑算法[J];紅外與激光工程;2000年01期
9 張海洋,鞠九濱,胡亮;對NWS中資源性能預(yù)報算法的一個改進[J];吉林大學(xué)學(xué)報(理學(xué)版);2005年02期
10 魏丹,陳淑珍,陳彬,楊莘;梯度倒數(shù)加權(quán)平滑算法的改進與實現(xiàn)[J];計算機應(yīng)用研究;2005年03期
相關(guān)會議論文 前6條
1 陳琰;高月芳;朱同林;;基于頂點屬性的三維網(wǎng)格模型混合平滑算法[A];計算機技術(shù)與應(yīng)用進展·2007——全國第18屆計算機技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集[C];2007年
2 尹勇;曹振海;祖漪清;;語境相關(guān)的音素級語音合成系統(tǒng)中拼接平滑算法研究[A];第九屆全國人機語音通訊學(xué)術(shù)會議論文集[C];2007年
3 胡晟;張樹武;徐波;;基于裁剪門限改進的Katz平滑算法[A];第七屆全國人機語音通訊學(xué)術(shù)會議(NCMMSC7)論文集[C];2003年
4 朱莉;孟遙;趙鐵軍;;典型參數(shù)平滑算法在詞性標注中的性能評價[A];語言計算與基于內(nèi)容的文本處理——全國第七屆計算語言學(xué)聯(lián)合學(xué)術(shù)會議論文集[C];2003年
5 尚鳳軍;;自適應(yīng)小波在X熒光譜分析中的應(yīng)用[A];第二屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2004年
6 郭叔毅;李楠;張玲;胡偉宏;;如何正確使用ClariView優(yōu)化MR圖像質(zhì)量[A];第八次全國中西醫(yī)結(jié)合影像學(xué)術(shù)交流大會暨全國中西醫(yī)結(jié)合影像學(xué)研究進展學(xué)習班論文集[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 趙紅宇;慣性行人導(dǎo)航系統(tǒng)的算法研究[D];大連理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前5條
1 賈宇崗;混合估計自適應(yīng)平滑算法研究[D];西北工業(yè)大學(xué);2003年
2 顧彥慧;基于切向的網(wǎng)格平滑算法研究[D];河海大學(xué);2005年
3 褚昆;基于互信息的統(tǒng)計語言模型數(shù)據(jù)平滑算法[D];哈爾濱工程大學(xué);2009年
4 李爭明;流媒體質(zhì)量控制算法的應(yīng)用研究及實現(xiàn)[D];清華大學(xué);2005年
5 東方;基于陣列誤差情況下相干信源DOA估計算法研究[D];吉林大學(xué);2007年
,本文編號:2354017
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2354017.html