核自適應(yīng)濾波算法及其在噪聲對(duì)消與信道均衡中應(yīng)用
[Abstract]:The linear adaptive filtering algorithm has some advantages in solving some problems, but the problems studied in practice are often related to some nonlinear problems. The performance of the linear algorithm in dealing with nonlinear problems is not satisfactory, for example, in the applications of noise cancellation and channel equalization. The kernel method (Kernel Methods) is introduced into the nonlinear field with the research of support vector machine (SVM). The kernel method provides a technical path for the study of nonlinear problems. The linear algorithm is used to deal with the nonlinear relations in the original space in a suitable high dimensional feature space. Kernel method has been widely used in pattern recognition and image processing. At present, there are many linear adaptive filtering algorithms. It is of great theoretical significance and value to study more and more effective nonlinear filtering algorithms with the help of kernel method. Kernel method is an effective technique to induce nonlinear algorithm by linear algorithm. Aiming at the shortcoming of the least mean square (LMS) algorithm in dealing with nonlinear problems, two novel nonlinear adaptive filtering algorithms are studied by using the kernel method in pattern recognition. The nonlinear versions of normalized minimum mean square (NLMS) algorithm and fourth-order error signal minimization (LMF) algorithm are called KNLMS algorithm and KLMF algorithm respectively. The main work of this paper is summarized as follows: (1) two kernel adaptive filtering algorithms, kernel normalized least mean square (KNLMS) algorithm and kernel fourth-order error signal minimization (KLMF) algorithm, are studied by using the kernel method principle. Numerical results of the two algorithms are presented. (2) the application of the proposed KLMF algorithm in noise cancellation is discussed. The simulation results show the availability and effectiveness of the proposed algorithm. (3) the application of the proposed KLMF algorithm in nonlinear channel equalization is discussed. The simulation results show the availability and advantage of the algorithm, and analyze the influence of different parameters on the performance of the algorithm.
【學(xué)位授予單位】:西華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN713;TN911.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋紫毓;彭盛亮;趙睿;;可見(jiàn)光通信中一種基于分段誤差函數(shù)的變步長(zhǎng)LMS算法[J];信號(hào)處理;2017年04期
2 馬令坤;吳波;毛紅艷;;改進(jìn)的變誤差寬度變階數(shù)LMS算法[J];現(xiàn)代電子技術(shù);2017年01期
3 劉牮;李_g;;一種用于信號(hào)估計(jì)的改進(jìn)變步長(zhǎng)LMS算法[J];電力科學(xué)與工程;2016年10期
4 李亮;;基于再生核Hilbert空間的非線性信道均衡算法[J];計(jì)算機(jī)工程與應(yīng)用;2016年16期
5 陳緒君;朱宇芳;胡君紅;馬得宇;;滑動(dòng)窗近似線性依賴稀疏的核遞推最小二乘算法[J];計(jì)算機(jī)工程;2016年08期
6 管四海;李智;;基于修正反正切函數(shù)的變步長(zhǎng)LMS算法[J];中國(guó)科技論文;2016年14期
7 李麗;石翠萍;李會(huì);;VoIP回聲消除中LMS改進(jìn)算法的研究[J];高師理科學(xué)刊;2016年06期
8 王蒙;趙建平;張炳婷;;一種基于雙曲正割函數(shù)的變步長(zhǎng)LMS算法[J];通信技術(shù);2016年06期
9 王洪誠(chéng);王蕾;沈霞;楊欣榮;王正;;基于改進(jìn)增益型自適應(yīng)LMS算法的諧波檢測(cè)方法[J];電力系統(tǒng)保護(hù)與控制;2016年05期
10 林云;雷洋;曾俊俊;;抗沖擊噪聲的核對(duì)數(shù)最小絕對(duì)差算法[J];電子技術(shù)應(yīng)用;2016年02期
相關(guān)碩士學(xué)位論文 前3條
1 趙一逍;基于核函數(shù)的自適應(yīng)濾波算法研究及其系統(tǒng)實(shí)現(xiàn)[D];北京理工大學(xué);2015年
2 陳乾;核自適應(yīng)濾波算法研究[D];華中師范大學(xué);2014年
3 苗秋園;核自適應(yīng)濾波算法的研究[D];浙江大學(xué);2012年
,本文編號(hào):2317378
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2317378.html