基于LabVIEW的低噪聲超快泵浦-探測(cè)系統(tǒng)開發(fā)及應(yīng)用
[Abstract]:Ultra-fast pump-detection system can distinguish the change process of things in femtosecond order of magnitude. It has important applications in physics, biology, chemistry and medicine. It is necessary to change the optical path difference between the pump light and the probe light hundreds of times in the ultra-fast pumping-detection experiment and to record the power of the detection light corresponding to the optical path difference. Tedious data recording and optical path difference control are difficult to be accomplished manually. Therefore, automatic control system is the key to its application. In addition, the laser source used in the ultra-fast pump-probe system is usually jitter, which results in a low SNR of the measured results. How to obtain high SNR detection signal is also the key technology of pump-detection. This paper focuses on the design and construction of a low-noise ultra-fast pump-probe automatic control system. Based on Lab VIEW, the ultra-fast pump-probe automatic measurement system is developed, and the signal-to-noise ratio (SNR) characteristics of the system are studied in combination with the phase-locked amplifier. The main work of this paper is as follows: (1) based on the Lab VIEW virtual instrument development platform, an automatic control software for ultra-fast pumping and detection is designed. The software realizes the automatic control of the system and the automatic collection of data by means of the RS232 and GPIB protocol to control the instrument in the measuring system. Moreover, the automatic control software can map the measurement data in real time, which reduces the workload of the pump-detection experiment system. (2) combining the optical chopper and the phase-locked amplifier, a low-noise ultra-fast pump-detection system is built. In an ultra-fast pump-probe system, a chopper is used to modulate the laser to a specific frequency. The chopper output signal is input to the phase-locked amplifier as the reference signal. The phase-locked amplifier only detects the same component of the measured signal as the reference signal frequency, while the other frequency components are greatly suppressed. If the laser power is measured directly by the power meter, the variance is 0.0001, and when the integral time constant is set to 3 s, the variance is 0.000006 when the phase-locked amplifier is used to measure the laser power. The effectiveness of the proposed noise reduction method is verified by testing the ultra-fast kinetic characteristics of carbon disulfide by ultra-fast pump detection system.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP311.52;TN722;TN24
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張衛(wèi)東;李力;張茂森;尹健昭;徐亞敏;;基于虛擬儀器和PXI總線的電磁閥控制系統(tǒng)研制[J];火箭推進(jìn);2015年01期
2 宋洪磊;閆理賀;司金海;侯洵;;基于超快光克爾效應(yīng)的超短脈沖光限幅器[J];中國(guó)激光;2015年02期
3 劉蓉;田進(jìn)壽;王強(qiáng)強(qiáng);王超;溫文龍;盧裕;劉虎林;曹希斌;王俊鋒;趙衛(wèi);;磁透鏡內(nèi)徑比對(duì)條紋變像管性能的影響[J];真空科學(xué)與技術(shù)學(xué)報(bào);2014年10期
4 喬自文;高炳榮;陳岐岱;王海宇;王雷;;飛秒超快光譜技術(shù)及其互補(bǔ)使用[J];中國(guó)光學(xué);2014年04期
5 胡華;鐘潔;;新型鎖相放大器的設(shè)計(jì)[J];電子測(cè)量技術(shù);2014年08期
6 劉培培;;虛擬儀器及其應(yīng)用[J];物理通報(bào);2014年06期
7 戴洪德;孫玉玉;吳曉男;吳光彬;;虛擬儀器在飛機(jī)儀表實(shí)驗(yàn)教學(xué)中的應(yīng)用探索[J];儀表技術(shù);2014年03期
8 張黎;蔡亮;;基于LabVIEW的虛擬信號(hào)發(fā)生器的設(shè)計(jì)與實(shí)現(xiàn)[J];國(guó)外電子測(cè)量技術(shù);2014年01期
9 李文祿;趙治華;唐健;肖歡;李毅;何方敏;;模擬乘法器零漂抑制技術(shù)[J];海軍工程大學(xué)學(xué)報(bào);2013年04期
10 王治昊;余錦;樊仲維;葛文琦;涂龍;貊澤強(qiáng);郭廣妍;王昊成;;全固態(tài)被動(dòng)調(diào)Q皮秒激光技術(shù)研究進(jìn)展[J];發(fā)光學(xué)報(bào);2013年07期
相關(guān)博士學(xué)位論文 前4條
1 馮亞輝;超快激光誘導(dǎo)分子排列及非線性光學(xué)效應(yīng)[D];華東師范大學(xué);2014年
2 彭俊松;超快光纖激光器及其動(dòng)力學(xué)特性研究[D];上海交通大學(xué);2013年
3 孔德貴;二硫化碳等幾種非線性材料的飛秒光學(xué)非線性研究[D];哈爾濱工業(yè)大學(xué);2010年
4 石光;應(yīng)用泵浦探測(cè)4F成像技術(shù)研究光學(xué)非線性動(dòng)力學(xué)[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前7條
1 邵龍;飛秒泵浦探測(cè)方法研究二氧化氮和碘甲烷的光解離動(dòng)力學(xué)[D];吉林大學(xué);2014年
2 葛琪妮;基于超快激光泵浦—探測(cè)干涉的精密測(cè)量技術(shù)研究[D];北京工業(yè)大學(xué);2014年
3 聶婭琴;基于鎖相放大器的微弱信號(hào)檢測(cè)研究[D];中南大學(xué);2014年
4 周茜;基于非線性頻率上轉(zhuǎn)換的中紅外波段少光子探測(cè)及成像[D];華東師范大學(xué);2014年
5 崔隨雄;基于LabVIEW的微弱光電信號(hào)檢測(cè)系統(tǒng)設(shè)計(jì)[D];哈爾濱理工大學(xué);2013年
6 許文佳;基于FPGA的數(shù)字鎖相放大器的設(shè)計(jì)與研究[D];吉林大學(xué);2012年
7 葉偉;基于虛擬儀器的寬頻噪聲檢測(cè)系統(tǒng)實(shí)現(xiàn)與應(yīng)用[D];西安電子科技大學(xué);2012年
,本文編號(hào):2293582
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2293582.html