微波開(kāi)關(guān)芯片的研究與設(shè)計(jì)
[Abstract]:With the development of wireless communication technology, modern microwave system requires more and more cost and integration. Using complementary metal oxide semiconductor (CMOS) process to integrate all modules of microwave transceiver system on the same silicon wafer has always been a hot topic at home and abroad. At present, microwave power amplifier and microwave switch are the main limiting factors for the full integration of microwave front-end due to the requirement of high power processing capability. This paper mainly studies the silicon-based CMOS microwave switch to promote the progress and development of microwave system. In this paper, the key performance parameters of microwave switch are studied in detail, and the methods to improve the power processing ability are put forward. At the same time, the model and working mechanism of the key passive devices are also explored to guide the design of high quality passive devices. The substrate conductivity and parasitic capacitance of three-well silicon complementary metal oxide semiconductor (Triple-well Bulk CMOS) process) make it difficult to realize low insertion loss of high frequency microwave bulk silicon CMOS switch. Therefore, based on lumped equivalent transmission line structure, a high frequency microwave switch is designed to reduce the substrate leakage loss of transistors and obtain low insertion loss performance. The design of high frequency and high isolation microwave switch is based on low insertion loss microwave switch, which is realized by structure cascade, which gains isolation by sacrificing insertion loss, and improves power processing ability by transistor cascade technology and feedforward capacitor technology. High resistance silicon substrate can be used to mitigate the substrate coupling effect due to the buried oxygen layer in the silicon (SOI) process on insulators. The low frequency microwave switch uses the silicon N communication field effect transistor (FB SOI NMOSFET),) on the floating insulator to adopt the series-parallel structure and the transistor cascade to improve the power processing ability. In this paper, the encapsulation is also considered, and the simulation and design with the switch are carried out to reduce the influence of the package on the microwave performance of the switch. The test results of high frequency low insertion loss microwave switches show that at 16 GHz, the test insertion loss of transmission mode and receiving mode is 4.3dB and 4.1 dB, the isolation degree is 26dB and 24 dB, and the input 0.1dB power compression point (IP0.1dB) and input 1dB power compression point (IP1dB) are 8dBm and 13.5 dBm, respectively. The test results of high frequency and high isolation microwave switches show that at 17.5 GHz, the insertion loss of transmit mode and receiving mode is 2.7dB and 2.3 dB, the isolation degree is 42dB and 31 dB, and the IP1dB of transmitting mode is 22dBmP0.1dB is 17dBmm. The simulation results of low frequency and high power processing power switches show that the insertion loss of each operation mode is less than 1.1 dB, and the isolation degree is greater than 25 dB IP 1dB about 44dBmU IP 0.1dB about 41dBmm. The designed microwave CMOS switch basically accords with the expected performance requirements, and it has a certain role in promoting the development of silicon-based CMOS full integrated microwave system and reference significance.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN63
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Dale Cigoy;;射頻和微波開(kāi)關(guān)測(cè)試系統(tǒng)基礎(chǔ)[J];數(shù)字社區(qū)&智能家居;2009年06期
2 李士剛;王文偉;姚崇斌;;微波開(kāi)關(guān)矩陣設(shè)計(jì)與使用[J];國(guó)外電子測(cè)量技術(shù);2009年07期
3 任阿龍;胡文麒;;一種新型微波開(kāi)關(guān)的設(shè)計(jì)與實(shí)現(xiàn)[J];電子測(cè)試;2011年04期
4 ;配置一個(gè)最佳的RF/微波開(kāi)關(guān)系統(tǒng)[J];今日電子;2002年02期
5 馬玉欽;蔣文斌;;關(guān)于大功率PIN微波開(kāi)關(guān)研制的探討[J];航天電子對(duì)抗;1987年03期
6 ;Racal公司可為用戶定制微波開(kāi)關(guān)[J];計(jì)算機(jī)測(cè)量與控制;2007年01期
7 Dale Cigoy;;射頻和微波開(kāi)關(guān)測(cè)試系統(tǒng)基礎(chǔ)[J];電子設(shè)計(jì)應(yīng)用;2009年03期
8 呂苗,趙正平,婁建忠,顧洪明,胡小東,李倩;一種DC~5GHz串聯(lián)微波開(kāi)關(guān)的溫度特性和功率處理能力的測(cè)試與分析(英文)[J];半導(dǎo)體學(xué)報(bào);2004年07期
9 ;Microsemi推出新的具有高可靠性的微波開(kāi)關(guān)驅(qū)動(dòng)器系列產(chǎn)品[J];電源技術(shù)應(yīng)用;2009年04期
10 來(lái)萍,李萍,鄭廷圭;AS169微波開(kāi)關(guān)電路的失效原因分析[J];電子質(zhì)量;2003年08期
相關(guān)會(huì)議論文 前8條
1 劉斐珂;文光俊;龐宏;金海炎;嚴(yán)中;;單片微波開(kāi)關(guān)技術(shù)及研究進(jìn)展[A];中國(guó)通信學(xué)會(huì)第五屆學(xué)術(shù)年會(huì)論文集[C];2008年
2 楊彪;段喜東;;寬帶高隔離微波開(kāi)關(guān)設(shè)計(jì)[A];2011年全國(guó)微波毫米波會(huì)議論文集(下冊(cè))[C];2011年
3 李立杰;;一種新型的微波開(kāi)關(guān)——微機(jī)械微波開(kāi)關(guān)[A];1999年全國(guó)微波毫米波會(huì)議論文集(上冊(cè))[C];1999年
4 李健開(kāi);唐小宏;;高速大功率PIN管微波開(kāi)關(guān)研究[A];2005'全國(guó)微波毫米波會(huì)議論文集(第二冊(cè))[C];2006年
5 謝興軍;;MEMS微波開(kāi)關(guān)的設(shè)計(jì)與仿真[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年
6 趙希榮;;PIN管微波開(kāi)關(guān)[A];1987年全國(guó)微波會(huì)議論文集(下)[C];1987年
7 周輝;;VXI微波開(kāi)關(guān)模塊的設(shè)計(jì)與實(shí)現(xiàn)[A];2010振動(dòng)與噪聲測(cè)試峰會(huì)論文集[C];2010年
8 馮坤;王福臣;過(guò)常寧;;G_aA_s單片微波開(kāi)關(guān)[A];1985年全國(guó)微波會(huì)議論文集[C];1985年
相關(guān)碩士學(xué)位論文 前10條
1 吳奕蓬;微波開(kāi)關(guān)芯片的研究與設(shè)計(jì)[D];電子科技大學(xué);2017年
2 雷培林;基于光控微波開(kāi)關(guān)的光纖—無(wú)線透明接入關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2014年
3 李文炬;基于SISL的微波開(kāi)關(guān)研究與設(shè)計(jì)[D];電子科技大學(xué);2017年
4 趙學(xué)敏;智能微波開(kāi)關(guān)上位機(jī)軟件和檢測(cè)儀的設(shè)計(jì)與實(shí)現(xiàn)[D];西安石油大學(xué);2012年
5 蘭立濤;光控微波開(kāi)關(guān)及其在可重構(gòu)天線中的應(yīng)用[D];電子科技大學(xué);2013年
6 何方;智能微波開(kāi)關(guān)的設(shè)計(jì)與實(shí)現(xiàn)[D];西安石油大學(xué);2012年
7 叢超;智能微波開(kāi)關(guān)接收器檢測(cè)儀的設(shè)計(jì)與實(shí)現(xiàn)[D];西安石油大學(xué);2014年
8 陳文奇;智能微波開(kāi)關(guān)發(fā)射器檢測(cè)儀的設(shè)計(jì)與實(shí)現(xiàn)[D];西安石油大學(xué);2014年
9 謝興軍;靜電驅(qū)動(dòng)MEMS微波開(kāi)關(guān)設(shè)計(jì)與仿真[D];重慶大學(xué);2004年
10 劉鵬舉;高隔離度光控微波開(kāi)關(guān)的理論與技術(shù)研究[D];電子科技大學(xué);2008年
,本文編號(hào):2291929
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2291929.html