單晶硅表面修飾及其納米力學(xué)行為研究
[Abstract]:The third generation gene sequencer based on nano-pore and related key technologies are of strategic significance for protecting our own gene resources. In order to realize this kind of gene sequencing technology, the main problems are as follows: first, the DNA molecule passes through the hole too fast, because of the passing through speed too fast, it is difficult to identify the base through the pore by testing the characteristic of the passing hole current; Second, the interaction mechanism between the four bases and the biological nano-pore wall is not clear. Further studies show that the greater the interaction force between DNA bases and the nano-pore wall, the smaller the thermal movement of ions in the nano fluid. The noise signal is mainly derived from the thermal movement of ions, and increasing the interaction force between DNA base and nano-pore wall is helpful to improve the signal-to-noise ratio (SNR). Therefore, it is of great significance for the third generation gene sequencing to study the wall specificity of DNA base. In this paper, the structure of two bases of DNA is analyzed, and the mechanical properties of monocrystalline silicon are studied based on the mechanical properties. The monocrystalline silicon is used as the substrate material to realize the assembly of DNA base biomolecules, and the modification mechanism is studied systematically. The influence factors of the fixed rate and the mechanical behavior of the modified surface under limited conditions. The characteristic peaks of adenine A and thymine T are different from those of other bases. The results of contact angle measurement showed that the time of complete silanization of silicon substrate was about 30min, and the complete molecular membrane was formed in the first time during the 20min reaction. The active amino group of DNA base chain reacts with the aldehyde group on the surface of silicon substrate and is immobilized on the silicon substrate. The results of fluorescence test showed that the concentration of silanization reagent had the greatest influence on the intensity of fluorescence background and the time of silanization was the least. The fixation rates of base A and T increased linearly with the increase of time when the concentration of silanized and aldehydized reagents was low, and the immobilization rates of base A and T showed maximum values when the concentration of reagents was higher. When the pH of the buffer solution of the probe is weak basic, the base fixation rate is larger, the probe sample concentration is 50 渭 mol/L, and the fixed rate of base A is higher than that of base T under the same condition. The results of nanomechanical study of monocrystalline silicon show that the elastic recovery rate of monocrystalline silicon increases with the increase of the half cone angle at the tip of the head for a given maximum loading force, and the elastic recovery is basically constant under the same experimental conditions. Compared with the (100) crystal face, the single crystal silicon (111) crystal mask has smaller hardness and elastic modulus, and with the increase of the maximum loading force, the material around the indentation of single crystal silicon will appear the phenomenon of stacking and surface bulging, and the elastic recovery of the indentation will increase. The range of plastic zone increases with the increase of loading force, and there is obvious size effect. The results of the mechanical behavior of the modified surface show that the normal force between the probe and the surface of the silicon wafer is less affected by the surface chemical morphology for the gap above 10nm in the atmospheric environment, and the gap below the 7nm is less affected by the normal force on the surface of the wafer. The interaction force between the surface and the probe was obviously decreased after the modification of the base, and the force between the probe and the base A and T was greatly affected by the loading rate. With the increase of the normal force, the transverse force between the probe and the silicon substrate increases, and the friction coefficient decreases gradually, and there are different interaction forces between the probe and the silicon wafer surface under different modification conditions. In addition, compared with base T, the surface modified by base A produces larger transverse force.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TN304.12
【相似文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前1條
1 孫霽宇;佟金;;納米力學(xué)測(cè)量中的儀器校準(zhǔn)[J];電子顯微學(xué)報(bào);2006年S1期
中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前10條
1 孫霽宇;佟金;;納米力學(xué)測(cè)量中的儀器校準(zhǔn)[A];2006年全國(guó)電子顯微學(xué)會(huì)議論文集[C];2006年
2 孫霽宇;佟金;陳東輝;;臭蜣螂部位表皮納米力學(xué)性能的測(cè)試研究[A];走中國(guó)特色農(nóng)業(yè)機(jī)械化道路——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
3 劉志遠(yuǎn);;軟骨含水量對(duì)動(dòng)態(tài)納米力學(xué)性能的影響[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年
4 佟金;孫霽宇;韓志武;;臭蜣螂(Copris ochus Motschulsky)表面納米力學(xué)性能測(cè)試方法[A];農(nóng)業(yè)機(jī)械化與全面建設(shè)小康社會(huì)——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)成立40周年慶典暨2003年學(xué)術(shù)年會(huì)論文集[C];2003年
5 李凱;董友;羅小薇;;原位納米力學(xué)的新近研究[A];2004年中國(guó)材料研討會(huì)論文摘要集[C];2004年
6 黃學(xué)明;孫博華;;超高頻納米力學(xué)諧振子[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——中國(guó)科協(xié)第五屆青年學(xué)術(shù)年會(huì)論文集[C];2004年
7 謝存毅;;納米力學(xué)測(cè)試技術(shù)及其應(yīng)用[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年
8 江鑫;劉曉宙;;納米力學(xué)模型在多層生物組織定征中的應(yīng)用[A];2009年度全國(guó)物理聲學(xué)會(huì)議論文集[C];2009年
9 宿彥京;褚武揚(yáng);喬利杰;;納米力學(xué)探針在材料蠕變和塑性變形研究中的應(yīng)用[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
10 佟金;孫霽宇;韓志武;;臭蜣螂(Copris ochus Motschulsky)表面納米力學(xué)性能測(cè)試方法[A];中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)成立40周年慶典暨2003年學(xué)術(shù)年會(huì)論文集[C];2003年
中國(guó)重要報(bào)紙全文數(shù)據(jù)庫(kù) 前1條
1 本報(bào)記者 常麗君;期待乘光而上[N];科技日?qǐng)?bào);2010年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前7條
1 蔡中蘭;BZT-BCT壓電材料電學(xué)與微/納米力學(xué)性能的研究[D];東南大學(xué);2015年
2 陳玲;非局部二維納米力學(xué)理論研究及彈跳小球—薄板系統(tǒng)動(dòng)力學(xué)初步探索[D];蘇州大學(xué);2016年
3 劉秋真;單晶硅表面修飾及其納米力學(xué)行為研究[D];中國(guó)礦業(yè)大學(xué);2016年
4 王悅明;三種生物梯度材料納米力學(xué)特性及仿生模型[D];吉林大學(xué);2013年
5 潘春祥;仿蜻蜓翅薄固體膜設(shè)計(jì)方法研究[D];吉林大學(xué);2012年
6 劉閣旭;BGA焊點(diǎn)在不同加載方式下的納米力學(xué)行為研究[D];哈爾濱理工大學(xué);2014年
7 張小冀;光學(xué)玻璃納米力學(xué)性能研究[D];大連理工大學(xué);2014年
,本文編號(hào):2253701
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2253701.html