Mn摻雜ZnO量子線的電子結(jié)構(gòu)及磁學性質(zhì)研究
[Abstract]:With the rise of the third science and technology revolution and the development of science and technology, the cognition of the microcosm is becoming more and more fine, and it can reach the level of -1510 m at present. With the decrease of scale, nanomaterials have attracted wide attention due to their unique physical properties. As a traditional wide bandgap semiconductor, zinc oxide has its unique properties in many fields, such as photoelectricity, piezoelectric, thermoelectricity and ferroelectricity. It has great application potential and research value. The study of nanoscale semiconductor materials includes two dimensional quantum well, one dimensional quantum wire, zero dimensional quantum dot or quantum ring. Since modern times, ZnO-based dilute magnetic semiconductors have attracted extensive attention of many researchers in the world for their great potential application in spin electronics. Relevant theoretical and experimental results have been continuously reported. In quantum wells, quantum dots and quantum rings, the scientific community has made a lot of achievements, but the research on quantum wires is relatively rare. In this paper, the electronic structure of Zn O quantum wire is discussed, and the influence of magnetic field on it is discussed. In addition, the variation of valence band in the magnetic field of manganese doped zinc oxide thin magnetic semiconductor quantum wire is analyzed. Some magneto-optic properties of the material in the magnetic field have been studied. The main problems and conclusions in this paper are as follows: (1) the development of nanomaterials is described in Chapter 1, and the significance of their research is demonstrated. In this chapter, the properties and characteristics of Zn O and dilute magnetic semiconductors are briefly explained, as well as some theories used in this paper. (2) in chapter 2, the theoretical models used in this paper are derived in detail. (3) in chapter 3, the energy band structure of Zn O quantum wire is calculated. Based on the effect mass approximation, the Hamiltonian of the empty and electronic states of wurtzite is first derived. By solving the Schrodinger equation, the 10 lowest valence bands with several different angular momentum hJ are obtained. By comparing the band changes of BC0T and BC20T, we can see that all valence band bands are doubly degenerate in the absence of magnetic field, and the simple parallel states will split when the magnetic field is added. (4) in chapter 4, the electronic structure and magnetic properties of Mn doped Zn O quantum wires are studied. In this chapter, the electron and hole states of Mn doped Zn O quantum wires under magnetic field are obtained based on the effective mass theory of six-band k p perturbation, and the Schrodinger equation is solved by Bessel function expansion method. Then 10 lowest valence bands with different angular momentum hJ are calculated. We find that all valence bands will no longer degenerate in a magnetic field. In addition, we also find that when the magnetic field B is not zero, all the hole states with positive hJ will be reversed, and no inversion will occur when the magnetic field B is negative. In the second half of this chapter, we have calculated and drawn Mn doped Zn O quantum wires in? By comparative analysis we find that the number of absorption peaks increases with the increase of carrier concentration and temperature. It is found that the quasi Fermi level of mn doped Zn O quantum wire does not change with the concentration of Mn ion, but the quasi Fermi level of valence band increases with the increase of Mn ion concentration.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN304.21
【相似文獻】
相關(guān)期刊論文 前10條
1 張賢高;方忠慧;陳坤基;錢昕曄;劉廣元;徐駿;黃信凡;何飛;;雙柵調(diào)控的硅量子線中的庫侖振蕩效應[J];物理學報;2011年02期
2 盛柏楨;量子線的精密制作技術(shù)[J];固體電子學研究與進展;1991年04期
3 李文霞,劉建軍,李有成;量子線的一維等效勢模型的研究[J];河北師范大學學報;2000年04期
4 郭子政,吳曉薇,周培勤;T型量子線的電子結(jié)構(gòu)計算[J];內(nèi)蒙古師大學報(自然科學漢文版);2000年02期
5 張臣,趙小寧;半導體量子線材料[J];半導體情報;2001年03期
6 楚海建;張凱;楊洪偉;楊小令;梁金棟;;橫截面為三角形的半導體量子線結(jié)構(gòu)的彈性解[J];揚州大學學報(自然科學版);2007年03期
7 郭志超;王光燦;曹勝男;;電子在圓柱形半導體量子線中的行為研究[J];原子核物理評論;2007年03期
8 郭志超;曹勝男;王清理;;圓柱形半導體量子線中電子和空穴能態(tài)[J];云南大學學報(自然科學版);2007年S1期
9 王憶鋒;;量子線紅外光子探測器的研究進展[J];光電技術(shù)應用;2008年06期
10 李宏;郭華忠;路川;李玲;高潔;;聲表面波單電子輸運器件中量子線的電學特性研究[J];物理學報;2008年09期
相關(guān)會議論文 前5條
1 陳弘;張云;;側(cè)向外延一維量子線截面樣品制備技術(shù)[A];第八次全國電子顯微學會議論文摘要集(Ⅱ)[C];1994年
2 狄堯民;;多值量子線路的有效合成與多值量子態(tài)的有效制備[A];第十六屆全國量子光學學術(shù)報告會報告摘要集[C];2014年
3 李文東;顧永建;劉凱;Yuan-Harng Lee;Yao-ZhongZhang;;Qubit和Ququart系統(tǒng)中的最優(yōu)普適量子計算[A];第十五屆全國量子光學學術(shù)報告會報告摘要集[C];2012年
4 姚文杰;俞重遠;劉玉敏;蘆鵬飛;;量子線線寬對應變分布和帶隙的影響[A];全國第十三次光纖通信暨第十四屆集成光學學術(shù)會議論文集[C];2007年
5 余亞斌;;介觀結(jié)構(gòu)體系的動態(tài)響應[A];2006“與統(tǒng)計有關(guān)的凝聚態(tài)物理中一些數(shù)值計算問題”研討會論文集[C];2006年
相關(guān)博士學位論文 前9條
1 常凱;量子線中的電聲子相互作用[D];北京師范大學;1996年
2 李文東;量子信息處理中量子線路的優(yōu)化構(gòu)造與實現(xiàn)[D];中國海洋大學;2012年
3 趙增茹;柱形量子線中的電—聲子相互作用[D];內(nèi)蒙古大學;2009年
4 宋鐵磊;矩形量子線中的電—聲子相互作用[D];內(nèi)蒙古大學;2011年
5 王廷棟;半導體量子線中載流子多體相互作用及其光譜學效應[D];中國科學院研究生院(上海應用物理研究所);2014年
6 謝洪鯨;極性晶體量子線的極化子效應[D];北京師范大學;2002年
7 付喜;半導體異質(zhì)結(jié)自旋軌道耦合量子線自旋輸運研究[D];湖南師范大學;2009年
8 程芳;Luttinger量子線的交流輸運性質(zhì)[D];湖南師范大學;2008年
9 黃少華;一維半導體納米線體系的光譜和光學性質(zhì)研究[D];復旦大學;2006年
相關(guān)碩士學位論文 前10條
1 張穎;Mn摻雜ZnO量子線的電子結(jié)構(gòu)及磁學性質(zhì)研究[D];重慶大學;2015年
2 孫會妙;垂直磁場下三角形量子線中激子束縛能的研究[D];河北師范大學;2010年
3 段秀芝;磁場下有限深矩形量子線中激子束縛能的研究[D];河北師范大學;2008年
4 聞騰;量子線路模塊化級聯(lián)運算規(guī)則的研究[D];太原科技大學;2013年
5 張賀秋;一維量子線的能帶計算與分析[D];大連理工大學;2000年
6 楊謀;電磁場輻照下量子線的電子輸運和力學性質(zhì)[D];湖南師范大學;2003年
7 肖賢波;半導體量子線在電磁場輻照下的電子輸運性質(zhì)[D];湖南師范大學;2004年
8 魯耿彪;含時外場下量子線中電子態(tài)及其物理特性[D];湖南師范大學;2006年
9 李闖;量子線中磁場誘導的電荷輸運[D];吉林大學;2008年
10 蘇婷;GaAs與AlGaAs構(gòu)成的量子線中的電子輸運特性[D];哈爾濱工業(yè)大學;2009年
,本文編號:2218946
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2218946.html