高壓4H-SiC BJT功率器件特性研究
[Abstract]:As a kind of third generation semiconductor, silicon carbide (Silicon Carbide, SiC) has large band gap, large critical breakdown electric field and large thermal conductivity, which makes it especially suitable for high temperature and high pressure applications. 4H-SiC has higher electron mobility and lower anisotropy in various homotropic SiC bodies, which makes it more valuable for research and commerce. As a current-controlled device, 4H-SiC bipolar transistor (4H-SiC BJT) has the advantages of low on-resistance, low on-state loss and no secondary breakdown, but the current gain is still low. The problem of device degradation in long-term operation is of great significance to the study of 4H-SiC BJT. Based on the method of two-dimensional numerical analysis, 4H-SiC BJT is studied in this paper. In order to obtain more accurate simulation results, the device simulation model is established and the parameters are given, including impurity incomplete ionization model and Auger composite model. Secondly, the influence of the parameters of the device, including the emission region, base region and drift region, on the voltage resistance, on-resistance and current gain of the device is analyzed by simulation, and the parameters of the device are optimized with 1200V4H-SiC BJT as the target. Finally, a high voltage 4H-SiC BJT power device with a common emitter current gain of 39 and an ideal breakdown voltage of 1580V with a specific on-resistance of 3.7 m 惟 cm2, is obtained. Considering the edge electric field concentration, two kinds of junction terminals are designed, which are field limiting loop and junction terminal expansion. The peak value of electric field is reduced successfully, and the phenomenon of edge electric field concentration is avoided. The breakdown voltage of both junction terminals is about 1470V. The ideal parallel plane junction is reached at 933. Finally, aiming at the problem of low current gain caused by the surface recombination effect in the outer base region, the structure and process of the device are discussed in this paper. In terms of device structure, two new device structures, emitter metal extension and P-type passivating layer, are proposed, which modulate the surface carrier concentration distribution by controlling the surface potential of the external base region. Thus, the surface recombination rate of the outer base region is reduced. The simulation results show that the surface recombination effect of the outer base region is obviously weakened, and the common emitter current gain of the device is increased by 63. P passivating layer. The new device structure is based on the introduction of high concentration P passivation layer in the outer base region, which greatly reduces the external base resistance. The emitter current gain is improved by simulation. From the process point of view, by comparing the interfacial quality of SiC/SiO2 under different oxidation annealing conditions, it is found that the interfacial state density can be reduced by annealing with no, which is consistent with the previous reports, and the interfacial quality can be improved by increasing annealing temperature appropriately.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN322.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Mark A.Cejer;;基于器件特性進(jìn)行精確的高亮度LED測(cè)試[J];電子設(shè)計(jì)技術(shù);2011年09期
2 Lee Stauffer;;從實(shí)驗(yàn)室到代工廠的功率器件特性分析[J];今日電子;2012年08期
3 李建豐;趙燕平;常文利;歐谷平;張福甲;;8-羥基喹啉鋰材料及器件特性的研究[J];半導(dǎo)體光電;2009年02期
4 劉海琪;周建軍;董遜;陳堂勝;;InAlN/AlN/GaN HEMT器件特性研究[J];固體電子學(xué)研究與進(jìn)展;2011年02期
5 劉冬華;段文婷;石晶;胡君;陳帆;黃景峰;錢文生;肖勝安;朱東園;;一種結(jié)構(gòu)新穎的鍺硅NPN HBT器件特性研究[J];固體電子學(xué)研究與進(jìn)展;2013年01期
6 R.S.Butlin;王稼源;劉玉蘭;;低噪聲GaAs FET器件特性與材料質(zhì)量的關(guān)系[J];半導(dǎo)體情報(bào);1981年06期
7 董忠;雙柵MOSFET擴(kuò)散島電阻的考慮[J];半導(dǎo)體技術(shù);1986年06期
8 李肇基,陳星弼,曾軍;高壓功率器件特性的數(shù)值分析[J];電子科技大學(xué)學(xué)報(bào);1989年03期
9 ;其它工藝與設(shè)備[J];電子科技文摘;2003年03期
10 高明;;觸發(fā)器件特性差別問題的一種解決方式[J];徐州工程學(xué)院學(xué)報(bào);2007年04期
相關(guān)博士學(xué)位論文 前2條
1 徐躍杭;新型高頻場(chǎng)效應(yīng)器件特性與建模技術(shù)研究[D];電子科技大學(xué);2010年
2 尚也淳;SiC材料和器件特性及其輻照效應(yīng)的研究[D];西安電子科技大學(xué);2001年
相關(guān)碩士學(xué)位論文 前8條
1 劉夢(mèng)蛟;柔性銦鎵鋅氧化物半導(dǎo)體材料及器件特性仿真[D];電子科技大學(xué);2015年
2 崔強(qiáng)生;InAs/AlSb HEMT器件特性與工藝研究[D];西安電子科技大學(xué);2014年
3 宋成智;NVIS顯示器件特性研究[D];長(zhǎng)春理工大學(xué);2011年
4 倪明剛;應(yīng)變MOS器件特性研究[D];西安電子科技大學(xué);2011年
5 程小強(qiáng);多晶硅源漏SiC N-MOSFET關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2007年
6 孫成春;高壓4H-SiC BJT功率器件特性研究[D];電子科技大學(xué);2015年
7 李海霞;小尺寸效應(yīng)對(duì)MOSFET器件特性的影響[D];蘇州大學(xué);2009年
8 胡永剛;大功率靜電感應(yīng)器件制造技術(shù)的研究[D];蘭州大學(xué);2006年
,本文編號(hào):2208303
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2208303.html