氮化鎵基半導(dǎo)體電力電子器件擊穿機(jī)理研究
[Abstract]:The breakdown voltage of GaN-based power electronic devices is still far from its theoretical limit, which means that there is still much room to improve the breakdown characteristics of GaN-based power electronic devices. In this paper, the breakdown mechanism of GaN-based power electronic devices is studied extensively and deeply. In the second chapter of this paper, the problems in the process and Simulation of GaN-based HEMT and the details that need attention are discussed. The criteria for determining the five basic parameters are maximum output current IDmax, threshold voltage Vth, gate leakage Igleak, breakdown voltage VBR and characteristic on-resistance RON. Finally, three breakdown mechanisms are summarized: avalanche breakdown caused by local high electric field, thermal runaway caused by leakage current and temperature, and air breakdown between gate leakage. In the third chapter, three aspects related to the breakdown characteristics of Schottky leak HEMT are presented. Firstly, the Schottky leak structure is used to improve the forward bias and reverse bias blocking voltages of AlGaN/GaN HEMT, and the mechanism of increasing the two blocking voltages is discussed. By using Schottky leakage, the forward bias and reverse bias blocking voltages are increased from 72 V and - 5 V to 149 V and - 49 V respectively, which means that Schottky leakage can increase both breakdown voltages at the same time. The combination of Schottky leakage and leaky field plate can improve the idea of reverse bias blocking voltage. Leaky field plate can alleviate the peak value of electric field near the leaky electrode, and the reverse bias blocking voltage can be increased from - 67 V to - 653 V by using leaky field plate. The simulation results show that the combination of Schottky leakage and leaky field plate can effectively improve the reverse bias blocking ability of the device. In order to prevent the negative effect of the leaky field plate on the positive bias blocking voltage, the gap between the gate edge and the leaky field plate must be larger than a certain value, which ensures that the leaky field plate does not extrude the potential produced by the positive leakage voltage. To explain the mechanism of high K passivation layer increasing breakdown voltage in AlGaN/GaN HEMT, a metal/insulator/semiconductor structure (MIS) is formed between the side wall and the top of gate metal and GaN-based heterojunction material for HEMT with passivation layer, which is the real reason for modulating electric field in high K passivation layer. Thicker grid metal can increase the breakdown voltage of the device, thicker field plate can alleviate the peak value of electric field at the field plate, and can further improve the breakdown characteristics of the device. A high-performance AlGaN/GaN HEMT device with gate-to-drain spacing of 7 microns, breakdown voltage of 1310 V and power quality factor of 3.67 *109 V 2?-1.cm-2 is designed. This is the highest value of all GaN-based HEMTs. GaN MISHEMT devices and high voltage annular AlGaN/GaN HEMT devices. For AlGa N-channel HEMT with gate-to-drain spacing of 3 microns, the breakdown voltage increased from 144 V to 320 V. In addition, the trap states of AlGaN-channel HEMT were characterized by frequency conversion CV method for the first time in the world. It was found that the traps in AlGa N-channel HEMT were deeper than those in Ga N-channel HEMT. About 0.04 eV. The threshold voltage and breakdown voltage of InAlN/GaN HEMT are increased by combining gate dielectric with F-treatment under reasonable conditions. By F-treatment, the threshold voltage is drifted from - 7.6 V to 1.8 V. The negative charge F-ion modulated conductive band effectively reduces the gate leakage and buffer leakage. The gate-drain spacing is 3 micron and the buffer is reduced. Layer leakage increases the breakdown voltage of the device from 80 V to 183 V. The experimental results show that the threshold voltage and breakdown voltage can be increased simultaneously by combining gate dielectric with reasonable F treatment. It is an effective method to realize high voltage enhanced InAlN/GaN HEMT. The average breakdown electric field strength between the gate and drain is increased from 0.42 MV/cm to 0.96 MV/cm by using a circular structure in a regular strip HEMT. In Chapter 6, the limitation of conventional three-terminal breakdown characterization method is pointed out, and an improved method is proposed to solve the problems in its application. For conventional breakdown, seven breakdown curves are summarized, but the conventional breakdown characterization formulas are found. For the other five breakdown curves, the value of gate leakage current is larger than that of leakage current within a certain range of leakage voltage. In addition, the source current can not be used to characterize the buffer leakage, and their values and symbols are inconsistent. These problems show that the conventional characterization methods must be improved to accurately characterize the breakdown mechanism of the devices. Similar problems also occur in the off-state stress breakdown. The characterization method is also improved based on the two leakage currents. By using the improved method, the problems in the application of conventional breakdown characterization method are solved. The experiment and analysis show that the improved breakdown characterization method is very important for the study of the breakdown mechanism of GaN-based HEMT.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN386
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Narain G.Hingorani ,李志晨;電力電子器件在未來(lái)電力系統(tǒng)中的作用[J];微電子學(xué);1989年03期
2 ;“電力電子器件技術(shù)交流會(huì)”大會(huì)報(bào)告題目及報(bào)告人[J];半導(dǎo)體技術(shù);1990年05期
3 張青云;電力電子器件的應(yīng)用及發(fā)展[J];現(xiàn)代電子技術(shù);2001年01期
4 李現(xiàn)兵,師宇杰,王廣州,黃娟;現(xiàn)代電力電子器件的發(fā)展與現(xiàn)狀[J];世界電子元器件;2005年05期
5 李現(xiàn)兵;師宇杰;王廣州;王桂榮;;淺談現(xiàn)代電力電子器件的發(fā)展[J];電力電子;2005年03期
6 谷海紅;張珊靚;;電力電子器件的分析與應(yīng)用[J];電氣開關(guān);2006年06期
7 趙定遠(yuǎn);趙莉華;;現(xiàn)代電力電子器件的發(fā)展[J];成都大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期
8 彭偉發(fā);;“電力電子器件及其應(yīng)用”教學(xué)方法淺論[J];華東交通大學(xué)學(xué)報(bào);2007年S1期
9 錢金川;朱守敏;;電力電子器件絕緣柵雙極晶體管的應(yīng)用與保護(hù)(續(xù)一)[J];江蘇電器;2008年02期
10 鄧愛喜;;電力電子器件的發(fā)展與應(yīng)用[J];科技經(jīng)濟(jì)市場(chǎng);2008年05期
相關(guān)會(huì)議論文 前5條
1 肖向鋒;;制造電力電子器件的新型關(guān)鍵電子材料[A];2010中國(guó)電子信息材料產(chǎn)業(yè)發(fā)展高峰論壇論文集[C];2010年
2 陳治明;;碳化硅電力電子器件研發(fā)進(jìn)展與存在問(wèn)題[A];中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2002年
3 ;常州瑞華電力電子器件有限公司概況[A];2008中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文摘要集[C];2008年
4 祁春清;梁中華;;電力電子器件故障診斷的灰色理論方法探討[A];全面建設(shè)小康社會(huì):中國(guó)科技工作者的歷史責(zé)任——中國(guó)科協(xié)2003年學(xué)術(shù)年會(huì)論文集(上)[C];2003年
5 莊留杰;;現(xiàn)代電力電子器件和PWM控制技術(shù)[A];2006年電氣工程教育專業(yè)委員會(huì)年會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前10條
1 CCID微電子研究所;電力電子器件業(yè)向往高端[N];中國(guó)電子報(bào);2002年
2 本報(bào)記者 翼青;新政策力挺電力電子器件行業(yè)產(chǎn)業(yè)化[N];機(jī)電商報(bào);2007年
3 本報(bào)記者 段心鑫;電力電子器件產(chǎn)業(yè)發(fā)展看好[N];中國(guó)工業(yè)報(bào);2007年
4 劉國(guó)友;高端電力電子器件依賴進(jìn)口我國(guó)企業(yè)需加快突圍[N];中國(guó)電子報(bào);2008年
5 遼寧工學(xué)院 陳永真;電力電子器件技術(shù)發(fā)展重點(diǎn)[N];中國(guó)電子報(bào);2004年
6 記者 徐陽(yáng) 王立新;新型電力電子器件生產(chǎn)基地開工[N];吉林日?qǐng)?bào);2011年
7 祖強(qiáng);淺談碳化硅電力電子器件[N];中國(guó)電子報(bào);2003年
8 尉紅旗;電力電子行業(yè)今年將打通四個(gè)重要關(guān)節(jié)[N];中國(guó)工業(yè)報(bào);2005年
9 證券時(shí)報(bào)記者 劉征;中國(guó)南車攜手中科院建設(shè)“綠色中國(guó)芯”電力電子器件[N];證券時(shí)報(bào);2011年
10 才立;目標(biāo):讓產(chǎn)品成為行業(yè)最高標(biāo)準(zhǔn)[N];無(wú)錫日?qǐng)?bào);2009年
相關(guān)博士學(xué)位論文 前2條
1 張健;電力電子器件及其裝置的散熱結(jié)構(gòu)優(yōu)化研究[D];哈爾濱工業(yè)大學(xué);2015年
2 趙勝雷;氮化鎵基半導(dǎo)體電力電子器件擊穿機(jī)理研究[D];西安電子科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前1條
1 包明冬;機(jī)車電力電子器件用散熱器熱力性能數(shù)值仿真[D];大連交通大學(xué);2012年
,本文編號(hào):2188434
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2188434.html