天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電子信息論文 >

氮化鎵基半導(dǎo)體電力電子器件擊穿機(jī)理研究

發(fā)布時(shí)間:2018-08-17 17:57
【摘要】:氮化鎵基電力電子器件在電力電子領(lǐng)域具有很大的應(yīng)用潛力,其擊穿電壓的相關(guān)研究至關(guān)重要。目前GaN基電力電子器件的擊穿電壓距離其理論極限還有很大的距離,這就意味著其擊穿特性還有很大的提升空間。為了充分提高GaN基電力電子器件的擊穿特性,就需要對(duì)其擊穿機(jī)理進(jìn)行研究。本論文就是在此背景下對(duì)GaN基電力電子器件的擊穿機(jī)理展開了廣泛而深入的研究。本文的第二章對(duì)GaN基HEMT在工藝和仿真中存在的問(wèn)題和需要注意的細(xì)節(jié)進(jìn)行了討論,然后討論了測(cè)試中最大輸出電流IDmax,閾值電壓Vth,柵漏電Igleak,擊穿電壓VBR和特征導(dǎo)通電阻RON五個(gè)基本參數(shù)的判定標(biāo)準(zhǔn)。最后總結(jié)了三種擊穿機(jī)制:局部高電場(chǎng)導(dǎo)致的雪崩擊穿、泄漏電流與溫度導(dǎo)致的熱失控和柵漏間的空氣擊穿。這些基礎(chǔ)問(wèn)題的討論,可以使得GaN基電力電子器件擊穿機(jī)理的研究更加順利。在第三章中,給出了與肖特基漏HEMT擊穿特性相關(guān)的三個(gè)方面研究?jī)?nèi)容。首先,采用肖特基漏結(jié)構(gòu)同時(shí)提高了AlGaN/GaN HEMT的正偏和反偏阻斷電壓,并且對(duì)兩種阻斷電壓提高的機(jī)理進(jìn)行了研究。通過(guò)采用肖特基漏,正偏和反偏阻斷電壓分別從72 V和-5 V提高到了149 V和-49 V,即肖特基漏可以同時(shí)提高這兩個(gè)擊穿電壓。為了研究提高擊穿電壓的物理機(jī)理,對(duì)泄漏電流分量進(jìn)行了分析,并用仿真進(jìn)行了解釋說(shuō)明。其次,提出肖特基漏與漏場(chǎng)板相結(jié)合,可以提高反偏阻斷電壓的思想。漏場(chǎng)板可以緩解漏電極附近的電場(chǎng)峰值,通過(guò)采用漏場(chǎng)板反偏阻斷電壓從-67 V提高到-653 V。仿真結(jié)果表明,肖特基漏與漏場(chǎng)板相結(jié)合可以有效地提高器件的反偏阻斷能力。最后,研究了漏場(chǎng)板對(duì)正偏阻斷電壓產(chǎn)生的影響。為了防止漏場(chǎng)板對(duì)正偏阻斷電壓產(chǎn)生負(fù)面影響,柵邊緣和漏場(chǎng)板邊緣的間距必須要大于某個(gè)特定值,該值要保證漏場(chǎng)板不會(huì)擠壓正漏壓產(chǎn)生的電勢(shì)。作者在第四章中提出了一組耗盡電容模型,來(lái)解釋AlGaN/GaN HEMT中高k鈍化層提高擊穿電壓的機(jī)理。對(duì)于帶有鈍化層的HEMT,柵金屬的側(cè)壁和頂端會(huì)與GaN基異質(zhì)結(jié)材料形成金屬/絕緣體/半導(dǎo)體結(jié)構(gòu)(MIS結(jié)構(gòu)),這是高k鈍化層調(diào)制電場(chǎng)的真正原因;谔岢龅暮谋M電容模型,第一次發(fā)現(xiàn)柵金屬高度和場(chǎng)板厚度可以影響電場(chǎng)分布和擊穿電壓。較厚的柵金屬可以提高器件的擊穿電壓,較厚的場(chǎng)板可以緩解場(chǎng)板處的電場(chǎng)峰值,也可以進(jìn)一步改善器件的擊穿特性。此外,結(jié)合提出的耗盡電容模型和高k鈍化層強(qiáng)大的電場(chǎng)調(diào)制能力,作者設(shè)計(jì)了高特性AlGaN/GaN HEMT器件。設(shè)計(jì)的柵漏間距為7μm的HEMT,擊穿電壓為1310 V,功率品質(zhì)因數(shù)高達(dá)3.67×109V2·?-1·cm-2,這一數(shù)值是所有GaN基HEMT的最高值。本文實(shí)現(xiàn)了三種高性能GaN基電力電子器件,即高壓AlGaN溝道HEMT器件、增強(qiáng)型InAlN/GaN MISHEMT器件和高壓環(huán)形AlGaN/GaN HEMT器件。對(duì)于柵漏間距為3μm的AlGa N溝道HEMT,擊穿電壓從144 V提高到了320 V。此外,國(guó)際上首次通過(guò)采用變頻CV的方法對(duì)AlGaN溝道HEMT的陷阱態(tài)進(jìn)行了表征,研究發(fā)現(xiàn)AlGa N溝道HEMT中的陷阱比Ga N溝道HEMT要深大約0.04 eV。采用柵介質(zhì)與條件合理的F處理相結(jié)合的方法,同時(shí)提高了InAlN/GaN HEMT的閾值電壓和擊穿電壓。通過(guò)F處理,閾值電壓從-7.6 V正漂到了1.8 V。帶負(fù)電荷的F離子調(diào)制導(dǎo)帶,有效地降低了柵漏電和緩沖層漏電。柵漏間距為3μm,降低的緩沖層漏電將器件的擊穿電壓從80 V提高到了183 V。實(shí)驗(yàn)表明,柵介質(zhì)與條件合理的F處理相結(jié)合可以同時(shí)提高閾值電壓和擊穿電壓,是實(shí)現(xiàn)高壓增強(qiáng)型InAlN/GaN HEMT的有效方法。柵漏間距為18.8μm的環(huán)形AlGaN/GaN HEMT,其擊穿電壓高達(dá)1812V。相對(duì)于常規(guī)長(zhǎng)條形HEMT,通過(guò)采用環(huán)形結(jié)構(gòu),柵漏間平均擊穿電場(chǎng)強(qiáng)度從0.42 MV/cm增加到了0.96 MV/cm。常規(guī)的場(chǎng)板是在二維空間對(duì)電場(chǎng)強(qiáng)度進(jìn)行調(diào)制,從而提高擊穿電壓。作者制造的環(huán)形器件則是從第三個(gè)維度對(duì)電場(chǎng)強(qiáng)度進(jìn)行了調(diào)制,使得器件的擊穿特性有了很大的提升。這部分內(nèi)容在第五章中重點(diǎn)介紹。在第六章中指出了常規(guī)三端擊穿表征方法的局限性,并針對(duì)其在應(yīng)用中出現(xiàn)的問(wèn)題提出了一種改進(jìn)的方法。對(duì)于常規(guī)擊穿,作者總結(jié)了七種擊穿曲線,但是發(fā)現(xiàn)常規(guī)擊穿表征方法只能適用于其中的兩種。對(duì)于其他的五種擊穿曲線,一定漏壓范圍內(nèi),柵漏電的數(shù)值比漏電流的數(shù)值要大。此外,源電流也不能用來(lái)表征緩沖層漏電,它們的數(shù)值和符號(hào)是不一致的。出現(xiàn)這些問(wèn)題的原因,是常規(guī)擊穿表征方法在表征擊穿特性時(shí)將柵源電流忽略掉了。這些問(wèn)題表明,為了能夠準(zhǔn)確地表征器件的擊穿機(jī)理,常規(guī)表征方法必須進(jìn)行相應(yīng)的改進(jìn)。此外,關(guān)態(tài)應(yīng)力擊穿也出現(xiàn)了類似的問(wèn)題。作者通過(guò)一種簡(jiǎn)單的方法,將緩沖層漏電和漏柵電流提取了出來(lái),常規(guī)擊穿表征方法也基于這兩個(gè)泄漏電流進(jìn)行了改進(jìn)。通過(guò)采用改進(jìn)的方法,常規(guī)擊穿表征方法在應(yīng)用中出現(xiàn)的問(wèn)題得到了解決。實(shí)驗(yàn)與分析表明,改進(jìn)的擊穿表征方法對(duì)GaN基HEMT擊穿機(jī)理的研究非常重要。
[Abstract]:The breakdown voltage of GaN-based power electronic devices is still far from its theoretical limit, which means that there is still much room to improve the breakdown characteristics of GaN-based power electronic devices. In this paper, the breakdown mechanism of GaN-based power electronic devices is studied extensively and deeply. In the second chapter of this paper, the problems in the process and Simulation of GaN-based HEMT and the details that need attention are discussed. The criteria for determining the five basic parameters are maximum output current IDmax, threshold voltage Vth, gate leakage Igleak, breakdown voltage VBR and characteristic on-resistance RON. Finally, three breakdown mechanisms are summarized: avalanche breakdown caused by local high electric field, thermal runaway caused by leakage current and temperature, and air breakdown between gate leakage. In the third chapter, three aspects related to the breakdown characteristics of Schottky leak HEMT are presented. Firstly, the Schottky leak structure is used to improve the forward bias and reverse bias blocking voltages of AlGaN/GaN HEMT, and the mechanism of increasing the two blocking voltages is discussed. By using Schottky leakage, the forward bias and reverse bias blocking voltages are increased from 72 V and - 5 V to 149 V and - 49 V respectively, which means that Schottky leakage can increase both breakdown voltages at the same time. The combination of Schottky leakage and leaky field plate can improve the idea of reverse bias blocking voltage. Leaky field plate can alleviate the peak value of electric field near the leaky electrode, and the reverse bias blocking voltage can be increased from - 67 V to - 653 V by using leaky field plate. The simulation results show that the combination of Schottky leakage and leaky field plate can effectively improve the reverse bias blocking ability of the device. In order to prevent the negative effect of the leaky field plate on the positive bias blocking voltage, the gap between the gate edge and the leaky field plate must be larger than a certain value, which ensures that the leaky field plate does not extrude the potential produced by the positive leakage voltage. To explain the mechanism of high K passivation layer increasing breakdown voltage in AlGaN/GaN HEMT, a metal/insulator/semiconductor structure (MIS) is formed between the side wall and the top of gate metal and GaN-based heterojunction material for HEMT with passivation layer, which is the real reason for modulating electric field in high K passivation layer. Thicker grid metal can increase the breakdown voltage of the device, thicker field plate can alleviate the peak value of electric field at the field plate, and can further improve the breakdown characteristics of the device. A high-performance AlGaN/GaN HEMT device with gate-to-drain spacing of 7 microns, breakdown voltage of 1310 V and power quality factor of 3.67 *109 V 2?-1.cm-2 is designed. This is the highest value of all GaN-based HEMTs. GaN MISHEMT devices and high voltage annular AlGaN/GaN HEMT devices. For AlGa N-channel HEMT with gate-to-drain spacing of 3 microns, the breakdown voltage increased from 144 V to 320 V. In addition, the trap states of AlGaN-channel HEMT were characterized by frequency conversion CV method for the first time in the world. It was found that the traps in AlGa N-channel HEMT were deeper than those in Ga N-channel HEMT. About 0.04 eV. The threshold voltage and breakdown voltage of InAlN/GaN HEMT are increased by combining gate dielectric with F-treatment under reasonable conditions. By F-treatment, the threshold voltage is drifted from - 7.6 V to 1.8 V. The negative charge F-ion modulated conductive band effectively reduces the gate leakage and buffer leakage. The gate-drain spacing is 3 micron and the buffer is reduced. Layer leakage increases the breakdown voltage of the device from 80 V to 183 V. The experimental results show that the threshold voltage and breakdown voltage can be increased simultaneously by combining gate dielectric with reasonable F treatment. It is an effective method to realize high voltage enhanced InAlN/GaN HEMT. The average breakdown electric field strength between the gate and drain is increased from 0.42 MV/cm to 0.96 MV/cm by using a circular structure in a regular strip HEMT. In Chapter 6, the limitation of conventional three-terminal breakdown characterization method is pointed out, and an improved method is proposed to solve the problems in its application. For conventional breakdown, seven breakdown curves are summarized, but the conventional breakdown characterization formulas are found. For the other five breakdown curves, the value of gate leakage current is larger than that of leakage current within a certain range of leakage voltage. In addition, the source current can not be used to characterize the buffer leakage, and their values and symbols are inconsistent. These problems show that the conventional characterization methods must be improved to accurately characterize the breakdown mechanism of the devices. Similar problems also occur in the off-state stress breakdown. The characterization method is also improved based on the two leakage currents. By using the improved method, the problems in the application of conventional breakdown characterization method are solved. The experiment and analysis show that the improved breakdown characterization method is very important for the study of the breakdown mechanism of GaN-based HEMT.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN386

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Narain G.Hingorani ,李志晨;電力電子器件在未來(lái)電力系統(tǒng)中的作用[J];微電子學(xué);1989年03期

2 ;“電力電子器件技術(shù)交流會(huì)”大會(huì)報(bào)告題目及報(bào)告人[J];半導(dǎo)體技術(shù);1990年05期

3 張青云;電力電子器件的應(yīng)用及發(fā)展[J];現(xiàn)代電子技術(shù);2001年01期

4 李現(xiàn)兵,師宇杰,王廣州,黃娟;現(xiàn)代電力電子器件的發(fā)展與現(xiàn)狀[J];世界電子元器件;2005年05期

5 李現(xiàn)兵;師宇杰;王廣州;王桂榮;;淺談現(xiàn)代電力電子器件的發(fā)展[J];電力電子;2005年03期

6 谷海紅;張珊靚;;電力電子器件的分析與應(yīng)用[J];電氣開關(guān);2006年06期

7 趙定遠(yuǎn);趙莉華;;現(xiàn)代電力電子器件的發(fā)展[J];成都大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期

8 彭偉發(fā);;“電力電子器件及其應(yīng)用”教學(xué)方法淺論[J];華東交通大學(xué)學(xué)報(bào);2007年S1期

9 錢金川;朱守敏;;電力電子器件絕緣柵雙極晶體管的應(yīng)用與保護(hù)(續(xù)一)[J];江蘇電器;2008年02期

10 鄧愛喜;;電力電子器件的發(fā)展與應(yīng)用[J];科技經(jīng)濟(jì)市場(chǎng);2008年05期

相關(guān)會(huì)議論文 前5條

1 肖向鋒;;制造電力電子器件的新型關(guān)鍵電子材料[A];2010中國(guó)電子信息材料產(chǎn)業(yè)發(fā)展高峰論壇論文集[C];2010年

2 陳治明;;碳化硅電力電子器件研發(fā)進(jìn)展與存在問(wèn)題[A];中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2002年

3 ;常州瑞華電力電子器件有限公司概況[A];2008中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文摘要集[C];2008年

4 祁春清;梁中華;;電力電子器件故障診斷的灰色理論方法探討[A];全面建設(shè)小康社會(huì):中國(guó)科技工作者的歷史責(zé)任——中國(guó)科協(xié)2003年學(xué)術(shù)年會(huì)論文集(上)[C];2003年

5 莊留杰;;現(xiàn)代電力電子器件和PWM控制技術(shù)[A];2006年電氣工程教育專業(yè)委員會(huì)年會(huì)論文集[C];2006年

相關(guān)重要報(bào)紙文章 前10條

1 CCID微電子研究所;電力電子器件業(yè)向往高端[N];中國(guó)電子報(bào);2002年

2 本報(bào)記者 翼青;新政策力挺電力電子器件行業(yè)產(chǎn)業(yè)化[N];機(jī)電商報(bào);2007年

3 本報(bào)記者 段心鑫;電力電子器件產(chǎn)業(yè)發(fā)展看好[N];中國(guó)工業(yè)報(bào);2007年

4 劉國(guó)友;高端電力電子器件依賴進(jìn)口我國(guó)企業(yè)需加快突圍[N];中國(guó)電子報(bào);2008年

5 遼寧工學(xué)院 陳永真;電力電子器件技術(shù)發(fā)展重點(diǎn)[N];中國(guó)電子報(bào);2004年

6 記者 徐陽(yáng) 王立新;新型電力電子器件生產(chǎn)基地開工[N];吉林日?qǐng)?bào);2011年

7 祖強(qiáng);淺談碳化硅電力電子器件[N];中國(guó)電子報(bào);2003年

8 尉紅旗;電力電子行業(yè)今年將打通四個(gè)重要關(guān)節(jié)[N];中國(guó)工業(yè)報(bào);2005年

9 證券時(shí)報(bào)記者 劉征;中國(guó)南車攜手中科院建設(shè)“綠色中國(guó)芯”電力電子器件[N];證券時(shí)報(bào);2011年

10 才立;目標(biāo):讓產(chǎn)品成為行業(yè)最高標(biāo)準(zhǔn)[N];無(wú)錫日?qǐng)?bào);2009年

相關(guān)博士學(xué)位論文 前2條

1 張健;電力電子器件及其裝置的散熱結(jié)構(gòu)優(yōu)化研究[D];哈爾濱工業(yè)大學(xué);2015年

2 趙勝雷;氮化鎵基半導(dǎo)體電力電子器件擊穿機(jī)理研究[D];西安電子科技大學(xué);2015年

相關(guān)碩士學(xué)位論文 前1條

1 包明冬;機(jī)車電力電子器件用散熱器熱力性能數(shù)值仿真[D];大連交通大學(xué);2012年

,

本文編號(hào):2188434

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2188434.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b3569***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
99久久精品视频一区二区| 日韩欧美综合在线播放| 老司机精品在线你懂的| 日韩视频在线观看成人| 在线视频免费看你懂的| 久草视频这里只是精品| 欧美自拍偷自拍亚洲精品| 国产精品自拍杆香蕉视频| 午夜精品国产一区在线观看| 日韩一级免费中文字幕视频| 狠狠干狠狠操亚洲综合| 91日韩欧美国产视频| 日韩中文字幕有码午夜美女| 精品推荐国产麻豆剧传媒| 欧美激情视频一区二区三区| 精品国产亚洲免费91| 青青免费操手机在线视频| 激情五月天免费在线观看| 夫妻性生活动态图视频| 日本中文字幕在线精品| 粉嫩内射av一区二区| 69久久精品亚洲一区二区| 欧美不卡午夜中文字幕| 国产水滴盗摄一区二区| 日韩欧美一区二区亚洲| 五月婷婷亚洲综合一区| 中文字幕亚洲视频一区二区| 日韩精品一区二区一牛| 久久精品欧美一区二区三不卡| 黄男女激情一区二区三区| 国产男女激情在线视频| 初尝人妻少妇中文字幕在线| 亚洲精品欧美精品日韩精品| 日本欧美视频在线观看免费| 欧美激情一区=区三区| 国产午夜在线精品视频| 欧美多人疯狂性战派对| 国产精品偷拍视频一区| 久草视频在线视频在线观看| 在线免费视频你懂的观看| 国产一区二区熟女精品免费|