摻雜光子晶體光纖的傳輸特性及應用研究
[Abstract]:In this paper, the characteristics of doped photonic crystal fiber (PCFs) are studied by full vector finite element method. The influence of the structure parameters on the dispersion and nonlinearity of photonic crystal fiber is studied and the hybrid photonic crystal fiber with high nonlinearity and flat dispersion is studied theoretically. The main contents and achievements are as follows: 1. The transmission characteristics of bismuth doped photonic crystal fiber are studied theoretically. When the core is doped with high refractive index material, the nonlinear coefficient of photonic crystal fiber is improved, and the dispersion of the fiber is also changed. The influence of the structure parameters such as the diameter of doped core, the refractive index of medium, the diameter of air hole and the lattice constant on the dispersion characteristics and nonlinear coefficient of photonic crystal fiber is studied theoretically. Thus the structural design of photonic crystal fibers with high nonlinearity and specific dispersion characteristics is obtained. 2. Near zero flat dispersion and high nonlinear photonic crystal fibers with mixed core are proposed. The hybrid fiber core is composed of two kinds of bismuth doped materials with high refractive index. This structure not only improves the nonlinear characteristics of photonic crystal fiber greatly, but also can control the dispersion curve distribution. By analyzing the influence of fiber structure parameters on dispersion and nonlinearity, a photonic crystal fiber with near zero dispersion flat and high nonlinearity is obtained. Under the optimized structure parameters, the dispersion value of the fiber is about 0.5537ps/ (nm-km) at 1.55 渭 m wavelength, and the nonlinear coefficient is as high as 3301 W1km-1. In the wavelength range from 1.496 渭 m to 1.596 渭 m, the flat dispersion is distributed between 0.57ps/ (nm-km) and -1.93 ps/ (nm-km).
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN253
【共引文獻】
相關(guān)博士學位論文 前10條
1 余貺t-;基于吸收光譜法的光纖氣體傳感器及傳感網(wǎng)絡[D];北京交通大學;2011年
2 張虎;空芯光子帶隙光纖的結(jié)構(gòu)設(shè)計和特性研究[D];北京郵電大學;2009年
3 李宏雷;新型光子晶體光纖及其實用化相關(guān)技術(shù)研究[D];北京交通大學;2010年
4 馬會芳;微結(jié)構(gòu)光纖中超連續(xù)譜的產(chǎn)生及特性優(yōu)化研究[D];北京郵電大學;2013年
5 成純富;超短激光脈沖與光子晶體光纖非線性相互作用的研究[D];華中科技大學;2013年
6 郝銳;高雙折射光子晶體光纖的結(jié)構(gòu)設(shè)計與特性研究[D];燕山大學;2013年
7 鄭斯文;基于高速大容量光纖通信用大芯徑光纖及多芯光纖的研制[D];北京交通大學;2014年
8 許強;新型光子晶體光纖的數(shù)值模擬及應用研究[D];陜西師范大學;2014年
9 梁文斌;微結(jié)構(gòu)特種光纖結(jié)構(gòu)設(shè)計與特性研究[D];華中科技大學;2013年
10 臧可;高階光纖拉曼放大器的特性研究[D];北京郵電大學;2013年
相關(guān)碩士學位論文 前7條
1 侯金釵;光子晶體光纖的帶隙特性研究[D];燕山大學;2009年
2 劉春香;摻鉺及摻鍺光子晶體光纖非線性的研究[D];哈爾濱師范大學;2009年
3 雷生寶;參量放大器中噪聲特性分析[D];北京郵電大學;2013年
4 姚當;基于光子晶體光纖的超連續(xù)譜相干性研究[D];湖南大學;2013年
5 孫霽;結(jié)構(gòu)對光子晶體光纖受激布里淵散射慢光的影響及應用[D];蘭州理工大學;2014年
6 黃惠;雙芯光子晶體光纖的結(jié)構(gòu)設(shè)計與特性分析[D];燕山大學;2014年
7 潘興頌;基于多芯微結(jié)構(gòu)光纖耦合機制的快慢光傳輸[D];北京郵電大學;2014年
,本文編號:2170517
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2170517.html