基于SLWE的自適應(yīng)熵編碼器概率估計(jì)模型應(yīng)用研究
[Abstract]:Entropy coding, especially adaptive entropy coding, is the core of most image and video compression coding standards and many non-standard encoders. For example, MQ encoders in JPEG2000 and CABAC encoders in H.264/AVC are used for adaptive two value arithmetic coding. The coding performance of entropy coding is mainly related to two factors, one is probability model. The degree to which the actual characteristic of the source is consistent with the source, two is the way the encoder assigns the code word to the coded symbol based on the probability model. For the second point, the average code length of many entropy coding methods is very close to the Shannon entropy of the given probability model, and the performance improvement in this respect is very limited. For the first point, when the statistical characteristics of the coded data are relatively stable, the establishment of the probability model is relatively easy, but when the statistical characteristics of the coded data often change, the probability model often deviates from the actual characteristics of the source and affects the coding performance. If the probability model can reflect the characteristics of the data to be encoded in real time, the probability model can change the characteristics in real time. Based on the above background, this paper studies the establishment of the entropy encoder probability model when the data characteristics are changing frequently. Firstly, it introduces the correlation definition of the source entropy, the probability model and the estimation entropy, which is closely related to the entropy coding, and analyzes the code length of entropy coding and the data to be encoded. The relationship between the source entropy and the estimation entropy under the constraint of the probability model, the important role of the probability estimation model in the adaptive entropy encoder is expounded. Based on the above basic theory, the definition of the flat and non-stationary data and the relative mathematical representation are given, and the static model and the traditional Bayesian based on the Bayes are analyzed. The probability estimation algorithm of the parameter estimation theory is not suitable for the reason of the probability estimation of non stationary data and has been verified by the related experiments. At last, the probability estimation algorithm of two classical non stationary environments is introduced, and the probability estimation effect of each probability estimation method for different characteristic data is analyzed. Finally, the influence of the intensity of the nonstationary data characteristics on the whole probability estimation process is discussed. The basic idea of the adaptive ability of the probability estimation algorithm based on the change characteristics of the data is proposed. Secondly, the probability of the stochastic learning weak estimation (stochastic learning weak estimators, SLWE) is studied in the nonstationary data probability. The application of the estimation problem is introduced. First, the two distribution and multi distribution parameter estimation process based on SLWE is introduced, and its applicability is analyzed from two aspects of qualitative and quantitative. The inherent principle of the probability updating is analyzed deeply, and compared with the window method, the inner connection between the method and the window method is analyzed. Finally, the framework of the interval coding is used. The interval coding method of probability estimation using SLWE algorithm is designed. The problem of interval degradation which may be caused by the transplantation of SLWE algorithm into the interval coding and the decoding problem caused by the rounding error of floating point accumulation are described in detail. Finally, the new interval coding method is analyzed by the actual analysis. In the end, a parameter adaptive SLWE algorithm based on adaptive ability of adaptive adjustment algorithm based on local characteristic changes of data is proposed. The algorithm aims at the complex characteristics of the change of the actual data characteristics. First, the non stationary degree of the data is analyzed by the change of the local statistical characteristics of the data. In the end, the position of the characteristic change is taken as the change point, and the learning factor of the SLWE algorithm is adjusted adaptively according to the position of the change point and the degree of change of the characteristic. The adaptive ability and convergence ability of the algorithm are changed to adapt to the change of the local characteristic of the data. Finally, the experimental analysis is given.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN762
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳華 ,丁杰偉;自適應(yīng)坐標(biāo)格繪制的實(shí)現(xiàn)[J];電腦編程技巧與維護(hù);2000年12期
2 邵任翔;自適應(yīng)網(wǎng)絡(luò)考試系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];廣州大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年02期
3 侯勇嚴(yán),孫瑜,郭文強(qiáng);一種自適應(yīng)模糊PID控制器的仿真研究[J];陜西科技大學(xué)學(xué)報(bào);2004年02期
4 申利民;汪新俊;;一個(gè)自適應(yīng)Web站點(diǎn)構(gòu)架的設(shè)計(jì)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2006年02期
5 曹冕;胡晨;姚國良;;嵌入式系統(tǒng)中自適應(yīng)背光的設(shè)計(jì)與實(shí)現(xiàn)[J];電子器件;2007年01期
6 周建華;王加陽;賀文華;;基于移動(dòng)Agent的自適應(yīng)動(dòng)態(tài)取證系統(tǒng)[J];微計(jì)算機(jī)信息;2007年06期
7 王華;應(yīng)晶;蔣濤;;基于審查不確定性的預(yù)見式軟件自適應(yīng)[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2010年01期
8 馮凱平;;自適應(yīng)測試在計(jì)算機(jī)基礎(chǔ)課考試中的應(yīng)用[J];信息與電腦(理論版);2011年01期
9 高新建;李艷玲;張明強(qiáng);欒玉環(huán);孫豐榮;姚桂華;;實(shí)時(shí)心肌聲學(xué)造影圖像的自適應(yīng)時(shí)空濾波[J];計(jì)算機(jī)工程;2011年S1期
10 徐玉華;蔡麗紅;劉政;楊濤;;用延遲和非延遲自適應(yīng)匹配的復(fù)雜動(dòng)力網(wǎng)絡(luò)自適應(yīng)同步(英文)[J];鄖陽師范高等?茖W(xué)校學(xué)報(bào);2012年06期
相關(guān)會議論文 前10條
1 盧志剛;易之光;趙翠儉;李兵;吳士昌;;一種新型的自適應(yīng)逆擾動(dòng)消除器[A];第二屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2004年
2 黃鶴;張丹;于偉東;嚴(yán)灝景;;功能自適應(yīng)紡織品[A];第七屆功能性紡織品及納米技術(shù)應(yīng)用研討會論文集[C];2007年
3 王蓬;宋明玉;張林芳;王新遠(yuǎn);;廣義自適應(yīng)相干累積算法改進(jìn)及其在線譜增強(qiáng)中的應(yīng)用[A];中國聲學(xué)學(xué)會2007年青年學(xué)術(shù)會議論文集(上)[C];2007年
4 于慧君;陳章位;;道路模擬試驗(yàn)自適應(yīng)時(shí)域復(fù)現(xiàn)控制方法研究[A];第九屆全國振動(dòng)理論及應(yīng)用學(xué)術(shù)會議論文摘要集[C];2007年
5 路迎晨;李兵;;一類自適應(yīng)預(yù)測算法的全局收斂性[A];04'中國企業(yè)自動(dòng)化和信息化建設(shè)論壇暨中南六省區(qū)自動(dòng)化學(xué)會學(xué)術(shù)年會專輯[C];2004年
6 陳博;方濱興;云曉春;;一種自適應(yīng)的蠕蟲檢測和遏制方法的研究[A];全國網(wǎng)絡(luò)與信息安全技術(shù)研討會'2005論文集(上冊)[C];2005年
7 李國;張心珂;楊國慶;高慶吉;;一種自適應(yīng)的運(yùn)動(dòng)目標(biāo)實(shí)時(shí)跟蹤算法[A];2006年首屆ICT大會信息、知識、智能及其轉(zhuǎn)換理論第一次高峰論壇會議論文集[C];2006年
8 楊寒光;;電子地圖中的自適應(yīng)注記[A];工程設(shè)計(jì)與計(jì)算機(jī)技術(shù):第十五屆全國工程設(shè)計(jì)計(jì)算機(jī)應(yīng)用學(xué)術(shù)會議論文集[C];2010年
9 孟宏;劉玉;;基于復(fù)調(diào)制的自適應(yīng)細(xì)化譜算法[A];2008中國儀器儀表與測控技術(shù)進(jìn)展大會論文集(Ⅰ)[C];2008年
10 王平;馮海朋;李勇;康燕;;一種工業(yè)無線網(wǎng)絡(luò)的自適應(yīng)節(jié)能機(jī)制[A];2009中國儀器儀表與測控技術(shù)大會論文集[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 王勝春;自適應(yīng)時(shí)頻分析技術(shù)及其在故障診斷中的應(yīng)用研究[D];山東大學(xué);2007年
2 劉亞;復(fù)雜非線性系統(tǒng)的智能自適應(yīng)重構(gòu)控制[D];南京航空航天大學(xué);2003年
3 馬國成;車輛自適應(yīng)巡航跟隨控制技術(shù)研究[D];北京理工大學(xué);2014年
4 吳禮福;脈沖噪聲自適應(yīng)有源控制算法研究[D];南京大學(xué);2012年
5 梁凌宇;人臉圖像的自適應(yīng)美化與渲染研究[D];華南理工大學(xué);2014年
6 葉鎮(zhèn)清;自適應(yīng)聚類算法挖掘網(wǎng)絡(luò)模塊結(jié)構(gòu)及其在酵母蛋白作用網(wǎng)絡(luò)中的應(yīng)用[D];浙江大學(xué);2008年
7 伍宇;移動(dòng)計(jì)算中自適應(yīng)負(fù)載轉(zhuǎn)移決策模型研究[D];復(fù)旦大學(xué);2012年
8 朱磊;基于自適應(yīng)鄰域概念的視頻圖像處理技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2007年
9 楊洋;三維人體動(dòng)作分析及其在智能舞蹈教學(xué)系統(tǒng)中的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2012年
10 田勇;室內(nèi)無線傳感器網(wǎng)絡(luò)環(huán)境自適應(yīng)定位和路由算法研究[D];大連理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 趙昆鵬;管道實(shí)時(shí)在線自適應(yīng)仿真技術(shù)研究[D];西安石油大學(xué);2015年
2 呂鋮杰;串聯(lián)彈性關(guān)節(jié)控制與交互剛度辨識[D];浙江大學(xué);2015年
3 王波;兩種基于萬有引力定律自適應(yīng)算法[D];渤海大學(xué);2015年
4 韋翔鴻;雷達(dá)定量降水估測自適應(yīng)優(yōu)化算法研究[D];南京信息工程大學(xué);2015年
5 查志遠(yuǎn);自適應(yīng)范數(shù)約束圖像正則化重建研究[D];昆明理工大學(xué);2015年
6 李威;射頻一體式EAS抗干擾研究與設(shè)計(jì)[D];鄭州大學(xué);2015年
7 費(fèi)強(qiáng);多功能自適應(yīng)偽裝裝置的研究與設(shè)計(jì)[D];南京理工大學(xué);2015年
8 張寧;圖像引導(dǎo)的體外自適應(yīng)放療在宮頸癌治療中的應(yīng)用研究[D];安徽醫(yī)科大學(xué);2015年
9 王帥;基于自適應(yīng)重啟的壓縮感知算法[D];華中師范大學(xué);2015年
10 劉金榮;種子流視覺檢測系統(tǒng)自適應(yīng)標(biāo)定的軟件研制[D];山西農(nóng)業(yè)大學(xué);2015年
,本文編號:2170042
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2170042.html