基于機(jī)器學(xué)習(xí)的故障預(yù)測與健康管理(PHM)方法研究
[Abstract]:In some important occasions, equipment failure will cause huge economic losses. With the development of science and technology, the internal structure of equipment is becoming more and more complex, and the difficulty and expense of manual maintenance are becoming higher and higher. After decades of development, the technology of fault prediction and health management has become an important means to reduce the cost of equipment maintenance, and has been widely used in many situations. The fault prediction of digital circuit is still in the exploration stage. Digital circuit is an indispensable part of people's life, and the research of its fault prediction and health management scheme is of great value. Through the research trends of fault prediction and health management at home and abroad, this paper summarizes the research and implementation methods of fault prediction and health management technology, and makes a pioneering study on fault prediction and health management schemes for digital circuits. Combined with the popular machine learning methods, this paper takes 74LS280 as an example, analyzes the chip features and related performance indexes, mining the data features of its performance degradation in the aging test data, and puts forward a method to predict the occurrence of faults. This method is easy to implement and has strong universality. In order to complete the experiment, a platform is designed to test the characteristic parameters of 74LS280. The platform design includes selecting sensors, simulating the hardware platform of using environment, and software platform for reading test data and transmitting to PC. Based on the support vector machine (SVM) method, a fault model is established by using the test data of 74LS280, which is used to diagnose the faults of other chips. As an extension, two data preprocessing methods are presented to optimize the training model to achieve faster training results or lower model errors. After the model is established, this paper proposes to estimate the trend of 74LS280 health value by least square method and to predict the residual life, and to improve the life prediction value by using the method of inertial storage data storage. Because the change of data with time does not show a monotonous trend, although the prediction value of residual life in this paper can not guarantee the accuracy of the numerical value, but it has enough to serve as an indication to the maintenance personnel, it has certain practicability.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN79
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 夏潤海,王開顏;機(jī)器學(xué)習(xí)與智能決策支持系統(tǒng)[J];濰坊學(xué)院學(xué)報(bào);2003年02期
2 張明玉,倪志偉;基于機(jī)器學(xué)習(xí)的智能決策支持系統(tǒng)[J];淮南師范學(xué)院學(xué)報(bào);2005年03期
3 楊凌霄;武建平;;機(jī)器學(xué)習(xí)方法在人臉檢測中的應(yīng)用[J];計(jì)算機(jī)與數(shù)字工程;2008年03期
4 ;第十一屆中國機(jī)器學(xué)習(xí)會(huì)議[J];智能系統(tǒng)學(xué)報(bào);2008年02期
5 ;第14屆中國機(jī)器學(xué)習(xí)會(huì)議[J];智能系統(tǒng)學(xué)報(bào);2012年06期
6 費(fèi)宗銘;呂建;王志堅(jiān);陳道蓄;徐家福;;機(jī)器學(xué)習(xí)[J];計(jì)算機(jī)科學(xué);1991年01期
7 趙沁平;魏華;王軍玲;;機(jī)器學(xué)習(xí)技術(shù)與機(jī)器學(xué)習(xí)系統(tǒng)[J];計(jì)算機(jī)科學(xué);1993年05期
8 姚敏;機(jī)器學(xué)習(xí)及其發(fā)展方向[J];計(jì)算機(jī)時(shí)代;1994年04期
9 ;第31屆機(jī)器學(xué)習(xí)國際會(huì)議(英文)[J];智能系統(tǒng)學(xué)報(bào);2014年01期
10 黃海濱;機(jī)器學(xué)習(xí)及其主要策略[J];河池師范高等?茖W(xué)校學(xué)報(bào)(自然科學(xué)版);2000年04期
相關(guān)會(huì)議論文 前10條
1 王玨;;歸納機(jī)器學(xué)習(xí)[A];2001年中國智能自動(dòng)化會(huì)議論文集(上冊)[C];2001年
2 王昊;李銀波;紀(jì)志梁;;利用機(jī)器學(xué)習(xí)方法預(yù)測嚴(yán)重藥物不良反應(yīng)-呼吸困難[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第13分會(huì)場摘要集[C];2012年
3 吳滄浦;;智能系統(tǒng)與機(jī)器學(xué)習(xí)的新領(lǐng)域[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年
4 周晴杰;徐立鴻;吳啟迪;;機(jī)器學(xué)習(xí)串級結(jié)構(gòu)的初步探討[A];1998年中國控制會(huì)議論文集[C];1998年
5 李剛;郭崇慧;林鴻飛;楊志豪;唐煥文;;基于詞典法和機(jī)器學(xué)習(xí)法相結(jié)合的蛋白質(zhì)名識別[A];大連理工大學(xué)生物醫(yī)學(xué)工程學(xué)術(shù)論文集(第2卷)[C];2005年
6 徐禮勝;李乃民;王寬全;張冬雨;耿斌;姜曉睿;陳超海;羅貴存;;機(jī)器學(xué)習(xí)在中醫(yī)計(jì)算機(jī)診斷識別系統(tǒng)中的應(yīng)用思考[A];第一屆全國中西醫(yī)結(jié)合診斷學(xué)術(shù)會(huì)議論文選集[C];2006年
7 蔡健平;林世平;;基于機(jī)器學(xué)習(xí)的詞語和句子極性分析[A];第三屆全國信息檢索與內(nèi)容安全學(xué)術(shù)會(huì)議論文集[C];2007年
8 黃金鐵;李景銀;周建常;;對高爐爐況評價(jià)模型參數(shù)的機(jī)器學(xué)習(xí)——一個(gè)三類線性模式分類器的實(shí)現(xiàn)[A];1995中國控制與決策學(xué)術(shù)年會(huì)論文集[C];1995年
9 程國建;蔡磊;潘華賢;;核向量機(jī)在大規(guī)模機(jī)器學(xué)習(xí)中的應(yīng)用[A];第十一屆中國青年信息與管理學(xué)者大會(huì)論文集[C];2009年
10 張鈸;張鈴;;統(tǒng)計(jì)學(xué)習(xí)理論及其應(yīng)用[A];2001年中國智能自動(dòng)化會(huì)議論文集(上冊)[C];2001年
相關(guān)重要報(bào)紙文章 前10條
1 黎驪/文 [美] Tom M.Mitchell 著;機(jī)器學(xué)習(xí)與智能化社會(huì)[N];中國郵政報(bào);2003年
2 IBM大數(shù)據(jù)專家 James Kobielus 范范 編譯;機(jī)器學(xué)習(xí)已成為大數(shù)據(jù)基石[N];網(wǎng)絡(luò)世界;2014年
3 本報(bào)記者 房琳琳;合久必分:分布式“機(jī)器學(xué)習(xí)”應(yīng)運(yùn)而生[N];科技日報(bào);2014年
4 雨辰;機(jī)器學(xué)習(xí)類圖書為什么火爆[N];中華讀書報(bào);2014年
5 百度公司技術(shù)副總監(jiān) 多媒體部負(fù)責(zé)人 余凱;深度學(xué)習(xí)與多媒體搜索技術(shù)演進(jìn)[N];中國信息化周報(bào);2013年
6 本報(bào)記者 余建斌;機(jī)器學(xué)習(xí)與互聯(lián)網(wǎng)搜索[N];人民日報(bào);2011年
7 本報(bào)記者 張曄邋通訊員 李瑋;周志華:永不墨守成規(guī)[N];科技日報(bào);2008年
8 上海 蘇成富;愿與數(shù)字電路初學(xué)者共享經(jīng)驗(yàn)體會(huì)[N];電子報(bào);2014年
9 記者 彭德倩;機(jī)器學(xué)習(xí)精度提升近6個(gè)百分點(diǎn)[N];解放日報(bào);2006年
10 本報(bào)記者 閔杰;大數(shù)據(jù)熱 高端人才缺[N];中國電子報(bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 董春茹;機(jī)器學(xué)習(xí)中的權(quán)重學(xué)習(xí)與差分演化[D];華南理工大學(xué);2015年
2 姚明臣;機(jī)器學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)中的若干問題研究[D];大連理工大學(xué);2016年
3 Maxim Pecionchin;[D];對外經(jīng)濟(jì)貿(mào)易大學(xué);2016年
4 杜宇;基于深度機(jī)器學(xué)習(xí)的體態(tài)與手勢感知計(jì)算關(guān)鍵技術(shù)研究[D];浙江大學(xué);2017年
5 鐘錦紅;群智學(xué)習(xí)若干問題研究[D];中國科學(xué)技術(shù)大學(xué);2017年
6 趙東;基于群智能優(yōu)化的機(jī)器學(xué)習(xí)方法研究及應(yīng)用[D];吉林大學(xué);2017年
7 魯路;基于機(jī)器學(xué)習(xí)優(yōu)化分子對接篩選腎衰營養(yǎng)膠囊有效成分[D];南方醫(yī)科大學(xué);2017年
8 趙玉鵬;機(jī)器學(xué)習(xí)的哲學(xué)探索[D];大連理工大學(xué);2010年
9 胡巍;面向格結(jié)構(gòu)的機(jī)器學(xué)習(xí)[D];上海交通大學(xué);2009年
10 張義榮;基于機(jī)器學(xué)習(xí)的入侵檢測技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 李永亮;基于機(jī)器學(xué)習(xí)的故障預(yù)測與健康管理(PHM)方法研究[D];電子科技大學(xué);2017年
2 毛海斌;基于半監(jiān)督機(jī)器學(xué)習(xí)的情感分類領(lǐng)域適應(yīng)問題研究[D];南京理工大學(xué);2015年
3 安軍輝;基于微博數(shù)據(jù)的微博用戶性別判斷研究[D];華中師范大學(xué);2015年
4 陳召陽;基于機(jī)器學(xué)習(xí)的改性麥槽吸附重金屬構(gòu)效關(guān)系模型研究[D];江西理工大學(xué);2014年
5 王成;基于半監(jiān)督機(jī)器學(xué)習(xí)的文本情感分析技術(shù)[D];南京理工大學(xué);2015年
6 孫科;基于Spark的機(jī)器學(xué)習(xí)應(yīng)用框架研究與實(shí)現(xiàn)[D];上海交通大學(xué);2015年
7 劉江龍;基于機(jī)器學(xué)習(xí)的射頻指紋定位方法研究[D];電子科技大學(xué);2015年
8 張蕾;基于機(jī)器學(xué)習(xí)的網(wǎng)絡(luò)輿情采集技術(shù)研究與設(shè)計(jì)[D];電子科技大學(xué);2014年
9 施宇;基于數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的木馬檢測系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
10 施應(yīng)敏;基于機(jī)器學(xué)習(xí)的Femtocell信道頻譜與功率資源分配算法的研究[D];南京郵電大學(xué);2015年
,本文編號:2163213
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2163213.html