基于FPGA的半導(dǎo)體激光器調(diào)頻非線性校正技術(shù)研究
本文選題:線性調(diào)頻連續(xù)波 + DFB半導(dǎo)體激光器 ; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:線性調(diào)頻連續(xù)波(LFMCW,Linear Frequency Modulated Continuous Wave)絕對(duì)距離測(cè)量技術(shù)是一種新興的測(cè)距技術(shù),具有無靶標(biāo)、無盲區(qū)、非接觸等其他傳統(tǒng)測(cè)距手段不具備的優(yōu)勢(shì)。正因如此,該技術(shù)可用于一些復(fù)雜大尺寸工件的加工和檢測(cè),同時(shí)測(cè)量精度更高、效率更快。盡管調(diào)頻連續(xù)波測(cè)距技術(shù)優(yōu)點(diǎn)突出,但缺點(diǎn)是作為光源的激光器調(diào)頻非線性程度對(duì)測(cè)距精度和測(cè)距分辨率影響嚴(yán)重。只有激光器調(diào)頻線性度非常高時(shí)才能獲得高測(cè)距精度和測(cè)距分辨率,所以有必要對(duì)激光器的調(diào)頻非線性校正技術(shù)進(jìn)行研究。本文主要圍繞DFB激光器的調(diào)頻非線性校正技術(shù)進(jìn)行研究,首先,介紹了FMCW測(cè)距的原理,給出了相應(yīng)參數(shù)的計(jì)算公式,分析了調(diào)頻非線性對(duì)測(cè)距精度和測(cè)距分辨率的影響,簡要說明了DFB激光器調(diào)頻非線性產(chǎn)生的原因;其次,對(duì)調(diào)頻非線性校正方法進(jìn)行了調(diào)研,確定了使用迭代校正方法進(jìn)行初步大帶寬范圍的非線性校正,給出了DFB激光器調(diào)頻非線性度的等價(jià)評(píng)判指標(biāo),設(shè)計(jì)了一種基于割線法的迭代校正算法,并說明了其數(shù)學(xué)模型、物理意義以及算法流程;根據(jù)本課題對(duì)信號(hào)相位準(zhǔn)確度的要求確定了采取FIR濾波器來實(shí)現(xiàn)迭代算法中部分?jǐn)?shù)學(xué)處理手段,并介紹了FIR濾波器的基本理論及其在FPGA中的實(shí)現(xiàn)方法;然后詳細(xì)介紹了基于FPGA的迭代校正算法具體實(shí)現(xiàn)方案,根據(jù)實(shí)驗(yàn)參數(shù)進(jìn)行了器件選型,設(shè)計(jì)了基于FPGA最小系統(tǒng)及相應(yīng)的外圍電路;對(duì)其中關(guān)鍵等效環(huán)節(jié)進(jìn)行了設(shè)計(jì)并對(duì)其幅頻響應(yīng)和相頻相應(yīng)進(jìn)行了驗(yàn)證。最后,搭建了基于FPGA的激光器調(diào)頻非線性校正系統(tǒng),實(shí)驗(yàn)驗(yàn)證了迭代算法的校正效果對(duì)電流調(diào)諧半導(dǎo)體激光器的調(diào)頻非線性有了明顯改善,并進(jìn)行了重復(fù)性測(cè)試,證明該迭代校正算法具有良好的重復(fù)性和穩(wěn)定性;結(jié)合所提出的校正原理、硬件電路以及光路結(jié)構(gòu)等分析了校正系統(tǒng)的噪聲及誤差來源。
[Abstract]:Linear Frequency Modulated continuous Wave (LFMCW) absolute distance measurement is a new ranging technique, which has the advantages of no target, no blind area, no contact and other traditional ranging methods. Because of this, the technology can be used to process and detect some complex and large size workpieces, and at the same time, the measurement accuracy is higher and the efficiency is faster. Although the advantages of FM CW ranging technology are outstanding, the disadvantage is that the nonlinearity of frequency modulation laser as a light source has a serious impact on ranging accuracy and ranging resolution. Only when the frequency modulation linearity of the laser is very high, high ranging accuracy and ranging resolution can be obtained. Therefore, it is necessary to study the FM nonlinear correction technology of the laser. In this paper, the frequency modulation nonlinear correction technology of DFB laser is studied. Firstly, the principle of FMCW ranging is introduced, the calculation formula of corresponding parameters is given, and the influence of frequency modulation nonlinearity on ranging precision and ranging resolution is analyzed. The cause of nonlinear frequency modulation of DFB laser is briefly explained. Secondly, the nonlinear correction method of frequency modulation is investigated, and the iterative correction method is used to correct the nonlinear problem in a wide bandwidth range. The equivalent evaluation index of frequency modulation nonlinearity of DFB laser is given, an iterative correction algorithm based on Secant method is designed, and its mathematical model, physical meaning and algorithm flow are explained. According to the requirement of signal phase accuracy, Fir filter is adopted to realize some mathematical processing methods in iterative algorithm, and the basic theory of Fir filter and its implementation method in FPGA are introduced. Then the implementation scheme of the iterative correction algorithm based on FPGA is introduced in detail. According to the experimental parameters, the device selection is carried out, and the minimum system based on FPGA and the corresponding peripheral circuit are designed. The key equivalent links are designed and the amplitude-frequency response and phase frequency are verified. Finally, a nonlinear tuning system of laser frequency modulation based on FPGA is set up. The experimental results show that the iterative algorithm can improve the frequency nonlinearity of current-tuned semiconductor lasers obviously, and the repeatability is tested. It is proved that the iterative correction algorithm has good repeatability and stability, and the noise and error sources of the correction system are analyzed based on the proposed correction principle, hardware circuit and optical circuit structure.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN248.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 時(shí)光;張福民;曲興華;孟祥松;;高分辨率調(diào)頻連續(xù)波激光絕對(duì)測(cè)距研究[J];物理學(xué)報(bào);2014年18期
2 顏?zhàn)雍?眭曉林;劉波;張穎;曹昌東;熊文龍;張大勇;趙鴻;;激光多普勒測(cè)速中連續(xù)波調(diào)頻非線性的分析與校正[J];紅外與激光工程;2014年08期
3 吳映;陳迪俊;孫延光;蔡海文;瞿榮輝;;半導(dǎo)體激光器光電負(fù)反饋線性調(diào)頻技術(shù)研究[J];中國激光;2013年09期
4 張曉光;王艷芬;王剛;劉衛(wèi)東;;應(yīng)用拓展時(shí)域信號(hào)法抑制DFT頻譜泄漏[J];實(shí)驗(yàn)科學(xué)與技術(shù);2012年05期
5 李志棟;江月松;桑峰;王林春;鄧士光;辛遙;郭涇平;;頻率掃描干涉法絕對(duì)測(cè)距中運(yùn)動(dòng)誤差的補(bǔ)償研究[J];光學(xué)學(xué)報(bào);2011年03期
6 趙繼廣;張智銓;鄧陳;;FM/cw激光雷達(dá)系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)研究[J];裝備指揮技術(shù)學(xué)院學(xué)報(bào);2009年03期
7 宦克為;鄭峰;石曉光;龐博;趙青義;;基于調(diào)頻連續(xù)波原理的三維成像激光雷達(dá)系統(tǒng)[J];長春理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期
8 武勇軍,李達(dá)成;電調(diào)頻半導(dǎo)體激光絕對(duì)測(cè)量干涉儀[J];激光技術(shù);1996年05期
相關(guān)博士學(xué)位論文 前1條
1 齊國清;FMCW液位測(cè)量雷達(dá)系統(tǒng)設(shè)計(jì)及高精度測(cè)距原理研究[D];大連海事大學(xué);2001年
相關(guān)碩士學(xué)位論文 前7條
1 張浩;電流調(diào)諧半導(dǎo)體激光器絕對(duì)距離測(cè)量技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 趙清云;DFB半導(dǎo)體激光器線性調(diào)頻技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 趙昊;FMCW激光雷達(dá)信號(hào)處理與研究[D];哈爾濱工業(yè)大學(xué);2014年
4 尤光茹;FM/cw激光雷達(dá)關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2011年
5 高潔;1.55μm激光線性調(diào)頻掃描成像的仿真與實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2011年
6 華昊;線性調(diào)頻連續(xù)波激光測(cè)距測(cè)速的研究[D];長春理工大學(xué);2011年
7 劉師;DFB激光新型穩(wěn)頻系統(tǒng)和相位不變性DDS的研制[D];中國計(jì)量科學(xué)研究院;2010年
,本文編號(hào):2097334
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2097334.html