高回流循環(huán)被動式微混合器的特性研究
本文選題:微混合器 + 循環(huán)回流; 參考:《江蘇大學》2017年碩士論文
【摘要】:作為微流控芯片的重要結(jié)構(gòu)單元和微機電系統(tǒng)的前處理裝置,微混合器伴隨著微流控芯片和微機電系統(tǒng)的發(fā)展而興起。根據(jù)有無增加額外動力源,微混合器可分為主動式和被動式兩大類;相比較而言,被動式微混合器由于不需要添加額外動力源,因而具有結(jié)構(gòu)簡單、加工方便、易于集成、且不會影響有機流體的生化活性和理化性質(zhì)等優(yōu)點,使其在化學合成、生化分析、生物測量技術(shù)、藥物控制釋放等領(lǐng)域有著廣闊的應用前景。為了克服微混合器混合過程中,中心面附近的流體混合效率比較高,而靠近壁面附近的流體混合效率比較低的缺點,本文設(shè)計出一種利用高速射流原理來實現(xiàn)高效回流的循環(huán)被動式微混合器,其具有結(jié)構(gòu)簡單,容易產(chǎn)生回流且回流率高,混合效率高等諸多優(yōu)點。該微混合器主要利用高速射流對混合區(qū)流體的卷吸、摻混作用,使循環(huán)通道中產(chǎn)生回流,從而實現(xiàn)邊界層附近混合效率較低流體的多次循環(huán)混合。本文通過ANSYS CFX數(shù)值模擬的方法,研究了不同結(jié)構(gòu)參數(shù)和流體參數(shù)對微混合器混合性能的影響;同時,通過設(shè)計微流體混合實驗,研究了微混合器的實際混合效果,并將實驗結(jié)果和模擬結(jié)果進行了對比。數(shù)值模擬結(jié)果表明,射流強度越大,流體粘度越小,微混合器的回流率和混合效率就越高,而且縮小射流噴嘴寬度L,或適當降低微混合器高度H均可有效提高射流強度;而當射流強度達到一定程度時,射流跡線會在混合區(qū)產(chǎn)生偏轉(zhuǎn),從而導致兩個循環(huán)通道中混合流體的回流量相差較大,這種不對稱的循環(huán)回流使得混合區(qū)流體分子間的碰撞更為劇烈,混沌對流強度更強,此時通常能實現(xiàn)很高的混合效率;當Re15時,微混合器的最大回流率已超過22%,混合效率則超過95%。根據(jù)實驗結(jié)果與數(shù)值模擬結(jié)果的對比,可以發(fā)現(xiàn):微流體混合實驗的實驗結(jié)果與數(shù)值模擬結(jié)果保持了良好的一致性,從而證明了本文采用的數(shù)值模擬方法的準確性和可靠性;這也說明,本文所設(shè)計的微混合器具有很好的實際應用價值。
[Abstract]:As an important structure unit of microfluidic chip and pre-processing device of micro-electromechanical system, micro-mixer has been developed with the development of microfluidic chip and micro-electromechanical system. Based on the availability of additional power sources, micromixers can be divided into active and passive types; by comparison, passive micromixers have simple structures, easy processing and easy integration because they do not require additional power sources. It will not affect the biochemical activity and physicochemical properties of organic fluid, which makes it have a broad application prospect in the fields of chemical synthesis, biochemical analysis, biological measurement technology, drug release control and so on. In order to overcome the disadvantage of high mixing efficiency near the center surface and low mixing efficiency near the wall in the mixing process of the micro mixer, In this paper, a kind of circulating passive micro mixer with high efficiency is designed by using the principle of high speed jet. It has many advantages, such as simple structure, easy to produce reflux and high reflux rate, high mixing efficiency and so on. The micro mixer mainly uses the high speed jet to absorb and mix the fluid in the mixing zone, so that the reflux is produced in the circulation channel, so that the mixing efficiency near the boundary layer is low. In this paper, the influence of different structure parameters and fluid parameters on the mixing performance of the micro mixer is studied by means of ANSYS CFX numerical simulation, and the actual mixing effect of the micro mixer is studied by designing the micro fluid mixing experiment. The experimental results are compared with the simulation results. The numerical simulation results show that the greater the jet strength and the lower the fluid viscosity, the higher the reflux rate and mixing efficiency of the micro mixer, and reducing the jet nozzle width L or reducing the height H of the micro mixer can effectively increase the jet strength. However, when the jet intensity reaches a certain degree, the jet trace will deflect in the mixing zone, resulting in a large difference in the reflux of the mixed fluid in the two circulation channels. This asymmetric circumfluence makes the collision between molecules in the mixing region more intense and chaotic convection more intense, which usually achieves a high mixing efficiency; when Re15, The maximum reflux rate of the micro mixer is over 22 and the mixing efficiency is over 95. According to the comparison between the experimental results and the numerical simulation results, it can be found that the experimental results of the micro-fluid mixing experiment are in good agreement with the numerical simulation results, which proves the accuracy and reliability of the numerical simulation method used in this paper. It also shows that the micro mixer designed in this paper has good practical application value.
【學位授予單位】:江蘇大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH-39;TN492
【參考文獻】
相關(guān)期刊論文 前10條
1 何秀華;韋丹丹;鄧志丹;楊嵩;蔡盛川;;基于對數(shù)螺旋線的新型被動式微混合器的性能[J];排灌機械工程學報;2014年11期
2 劉國君;趙天;王聰慧;楊志剛;楊旭豪;李思明;;Y型微混合器結(jié)構(gòu)與工作參數(shù)在兩相脈動混合中的優(yōu)化[J];吉林大學學報(工學版);2015年04期
3 姜新春;曾勁松;黃煌;;CFD技術(shù)在流體機械中的應用與發(fā)展[J];輕工機械;2014年03期
4 鄭林濤;董永生;;ImageJ軟件在數(shù)字圖像處理課程教學中的應用[J];中國電力教育;2014年08期
5 張端;汪甜;高巖;何熊熊;;高回流被動式微混合器設(shè)計及數(shù)值模擬[J];傳感技術(shù)學報;2013年11期
6 張宏飛;于鳳昌;;CFX數(shù)值模擬在防腐領(lǐng)域的應用[J];全面腐蝕控制;2012年03期
7 閻超;于劍;徐晶磊;范晶晶;高瑞澤;姜振華;;CFD模擬方法的發(fā)展成就與展望[J];力學進展;2011年05期
8 何秀華;鄧許連;畢雨時;王健;禚洪彩;;壓電無閥微混合器的數(shù)值模擬[J];排灌機械工程學報;2011年04期
9 王昆;王嘉駿;馮連芳;顧雪萍;;內(nèi)置阻塊型微混合器內(nèi)流體混合強化的數(shù)值模擬[J];化學工程;2010年12期
10 龐中華;宋滿倉;劉瑩;張金營;;微流控芯片技術(shù)的現(xiàn)狀與發(fā)展[J];塑料;2010年03期
相關(guān)博士學位論文 前1條
1 李健;平面被動式微混合器內(nèi)混合特性研究及其在納米顆粒制備中的應用[D];北京工業(yè)大學;2013年
相關(guān)碩士學位論文 前4條
1 陳楷;基于射流原理的液壓泵輔助吸油裝置設(shè)計與研究[D];西南交通大學;2016年
2 顏杰;內(nèi)置阻塊T型微混合器內(nèi)流動與混合特性研究[D];江蘇大學;2016年
3 董迎松;微流控快速混合新方法及應用研究[D];華中科技大學;2012年
4 韓克江;被動式微混合器混合特性的數(shù)值模擬[D];山東大學;2008年
,本文編號:2092096
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2092096.html