基于AC-LINK技術(shù)的大功率充電模塊EMI濾波器研究
本文選題:充電模塊 + EMI濾波器; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:隨著全球環(huán)境污染和化石能源危機(jī)的加劇,節(jié)能減排的需求日益迫切,新能源汽車作為無尾氣污染、能耗較低的電動交通工具獲得大力發(fā)展的機(jī)遇,同時也大大推動了作為基礎(chǔ)配套設(shè)備的充電電源技術(shù)的不斷進(jìn)步。目前,國內(nèi)外都在積極開發(fā)各種類型的電動汽車充電電源,大功率直流充電模塊因能實(shí)現(xiàn)電動汽車快速充電正在成為目前的主流方向和研究熱點(diǎn);贏C-link技術(shù)的充電模塊作為大功率能量變換裝置,具有較為復(fù)雜的內(nèi)部結(jié)構(gòu)和控制方式,且其半導(dǎo)體開關(guān)器件的高dv/dt、di/dt造成非常嚴(yán)重的傳導(dǎo)干擾問題。EMI濾波器是抑制開關(guān)電源傳導(dǎo)干擾的常用措施,本文對基于AC-link技術(shù)的大功率充電模塊的EMI濾波器進(jìn)行了研究。首先介紹了開關(guān)電源EMI濾波器及開關(guān)電源傳導(dǎo)干擾的國內(nèi)外研究現(xiàn)狀,并簡要闡述了本文研究的目的和意義,同時對本文的主要工作和行文安排進(jìn)行了必要的說明。簡述了基于AC-link技術(shù)的大功率充電模塊的拓?fù)浣Y(jié)構(gòu)、基本工作原理和控制方式,分析了充電模塊傳導(dǎo)干擾產(chǎn)生機(jī)理,針對共模干擾和差模干擾,分別理論分析了其干擾源和干擾傳播路徑。然后,開展了大功率充電模塊傳導(dǎo)干擾的測試研究。采用電流探頭法對充電模塊傳導(dǎo)干擾進(jìn)行了測試,并分離了其共模干擾、差模干擾。給出充電模塊傳導(dǎo)干擾測試的一般要求,并將CISPR規(guī)定的適用于大電流的單相人工電源網(wǎng)絡(luò)擴(kuò)展為三相,設(shè)計了基于電流探頭法的充電模塊傳導(dǎo)干擾測試方案,給出了詳細(xì)的結(jié)果處理方法。根據(jù)測試方案完成了充電模塊傳導(dǎo)干擾試驗(yàn),并采用三相共模、差模標(biāo)量分離方法得到了其共模干擾和差模干擾頻譜,通過與標(biāo)準(zhǔn)限值的對比確定干擾超標(biāo)情況及電磁兼容整改方向。接著,開展了三相EMI濾波器的改進(jìn)設(shè)計研究。基于三相EMI濾波器插入損耗仿真分析方法,對工作在大電流條件下的充電模塊三相EMI濾波器進(jìn)行了改進(jìn)設(shè)計;跒V波電容廠商提供的阻抗幅頻曲線建立其高頻等效電路,通過阻抗分析儀對共模電感、共模電感漏感、差模電感阻抗幅頻曲線進(jìn)行測試,建立對應(yīng)的高頻等效電路,采用電磁分析軟件提取印制板走線寄生參數(shù),根據(jù)CISPR 17對EMI濾波器插入損耗測試電路的規(guī)定,建立其共模和差模仿真模型分析了其插入損耗;诜抡娼Y(jié)果和充電模塊傳導(dǎo)干擾測試結(jié)果對EMI濾波器進(jìn)行改進(jìn)設(shè)計,并對改進(jìn)設(shè)計后的濾波器及采用該濾波器的充電模塊進(jìn)行了試驗(yàn)驗(yàn)證。最后,研究了一種適應(yīng)復(fù)雜控制方式和拓?fù)浣Y(jié)構(gòu)的充電模塊傳導(dǎo)干擾仿真分析方法,分析了 EMI濾波器在充電模塊中的插入損耗。在系統(tǒng)仿真軟件中建立包括EMI濾波器、匯流排等效電路模型、IGBT電路模型、變壓器高頻等效電路模型等元件的充電模塊傳導(dǎo)干擾電路分析模型,并在Simulink中建立其控制算法模型,通過聯(lián)合建模得到了充電模塊傳導(dǎo)干擾仿真模型。仿真分析了匯流排寄生參數(shù)、功率器件寄生電容、驅(qū)動信號上升時間等EMC關(guān)鍵元件或參數(shù)對充電模塊傳導(dǎo)干擾的影響。仿真分析了三相EMI濾波器在充電模塊中的插入損耗,并和單獨(dú)建模濾波器時得到的插入損耗進(jìn)行了對比。聯(lián)合建模為在設(shè)計階段模擬評估某些電磁兼容設(shè)計或參數(shù)對充電模塊傳導(dǎo)干擾的作用提供參考方法。
[Abstract]:With the global environmental pollution and the intensification of the fossil energy crisis, the demand for energy saving and emission reduction is becoming more and more urgent. As a new energy vehicle, the new energy vehicle, as a non exhaust pollution and low energy consumption electric vehicle, has greatly promoted the continuous progress of the charge source technology as a basic equipment. The charging power of various types of electric vehicles is developed very much. The high power DC charging module is becoming the mainstream and research hot spot because it can realize electric vehicle fast charging. As a high-power energy conversion device, the charging module based on AC-link technology has more complex internal structure and control mode and its semiconductor switch. The high dv/dt, di/dt cause very serious conduction interference problem,.EMI filter is a common measure to suppress the conduction interference of switching power supply. In this paper, the EMI filter of high power charging module based on AC-link technology is studied. First, the research status of the switched power EMI filter and the conduction interference of the switching power supply is introduced. The purpose and significance of the study are briefly described, and the main work and the arrangement of the text are explained. The topology, basic principle and control mode of the high-power charging module based on AC-link technology are briefly described. The mechanism of the conduction interference in the charging module is analyzed, and the common mode interference and the differential mode dry are analyzed. The interference source and the interference propagation path are analyzed in theory respectively. Then, the test research on the conduction interference of the high-power charging module is carried out. The current probe method is used to test the conductive interference of the charging module, and the common mode interference and differential mode interference are separated. The general requirements for the conduction interference test of the charging module are given, and the CISPR is stipulated. The single-phase artificial power supply network suitable for large current is extended into three phases. A current probe based charge module conduction interference test scheme is designed, and a detailed result processing method is given. Based on the test scheme, the conducting interference test of the charging module is completed, and the common mode interference is obtained by using the three phase common mode and differential mode scalar separation method. With the differential mode interference spectrum, the interference exceeding the standard and the rectification direction of the electromagnetic compatibility are determined by comparison with the standard limit. Then, the improved design of the three-phase EMI filter is carried out. Based on the insertion loss simulation analysis method of the three-phase EMI filter, the three-phase EMI filter of the charging module working under the condition of large current is improved. Based on the impedance amplitude frequency curve provided by the filter capacitor manufacturer, the high frequency equivalent circuit is set up. The impedance analyzer is used to test the common mode inductance, the leakage inductance of the common mode inductor and the impedance amplitude frequency curve of the differential mode inductor. The corresponding high frequency equivalent circuit is set up. The parasitic parameters of the printed board are extracted by the electromagnetic analysis software, and the EMI filtering is based on the CISPR 17. The insertion loss test circuit is set up, and its common mode and differential model simulation model is set up to analyze the insertion loss. Based on the simulation results and the test results of the charge module conduction interference, the EMI filter is improved. The improved filter and the charging module using the filter are tested and verified. Finally, a study is made. The simulation and analysis method of charge module conduction interference adapted to complex control mode and topology is introduced, and the insertion loss of EMI filter in the charging module is analyzed. In the system simulation software, the charging module including EMI filter, confluence discharge equivalent circuit model, IGBT circuit model, transformer high frequency equivalent circuit model and so on is set up. The model of interfering circuit is analyzed and its control algorithm model is established in Simulink. Through joint modeling, the simulation model of conducting interference of charging module is obtained. The influence of EMC key elements or parameters on the conduction interference of the charging module is simulated and analyzed. The insertion loss of the three-phase EMI filter in the charging module is compared with the insertion loss obtained from the separate modeling filter. The joint modeling provides a reference method to simulate the effect of some EMC design or parameters on the conducting interference of the charging module at the design stage.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN713
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧堅(jiān);汪正;謝長君;全書海;;基于Simplorer驅(qū)動電阻對IGBT特性影響研究[J];湖北工業(yè)大學(xué)學(xué)報;2016年04期
2 馮倩;李志忠;陳愛鸞;;大功率電動汽車充電電源并聯(lián)均流技術(shù)的研究[J];通信電源技術(shù);2015年04期
3 周逢道;董威;包志強(qiáng);薛開昶;胡越;孫彩堂;;基于開關(guān)電源的三相電磁干擾濾波器[J];吉林大學(xué)學(xué)報(工學(xué)版);2015年01期
4 房媛媛;秦會斌;;反激式開關(guān)電源傳導(dǎo)干擾的Saber建模仿真[J];電子器件;2014年05期
5 李鍵;魏克新;梁斌;;基于電流噪聲源模型的EMI濾波器設(shè)計[J];電源技術(shù);2014年09期
6 馮強(qiáng);廖成;熊祥正;葉志紅;;3kW微波源傳導(dǎo)電磁干擾測試及分析[J];電訊技術(shù);2014年06期
7 張政權(quán);劉慶想;李相強(qiáng);王慶峰;;基于高頻交流鏈接技術(shù)電容充電電源研究[J];電力電子技術(shù);2012年06期
8 白昊;張強(qiáng);李萬玉;;基于開關(guān)電源的EMI濾波器設(shè)計與實(shí)現(xiàn)[J];電力電子技術(shù);2012年05期
9 張政權(quán);劉慶想;李相強(qiáng);吳志鵬;王慶峰;楊賀;;高頻交流鏈接技術(shù)充電電源[J];強(qiáng)激光與粒子束;2012年03期
10 張政權(quán);劉慶想;吳志鵬;楊賀;;基于高頻交流鏈接技術(shù)的串聯(lián)諧振變換器[J];強(qiáng)激光與粒子束;2011年11期
,本文編號:2054991
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2054991.html