WOLED器件結(jié)構(gòu)與性能關(guān)系的研究
發(fā)布時間:2018-06-19 17:21
本文選題:白光OLED + 載流子傳輸 ; 參考:《南京郵電大學(xué)》2017年碩士論文
【摘要】:由于白光有機發(fā)光二極管(WOLED)在效率、亮度、功耗、視角、響應(yīng)速度、超薄超輕、可柔性化、固態(tài)發(fā)光等方面展現(xiàn)出的優(yōu)異性能,自誕生以來,得到了廣泛關(guān)注。雖然對WOLED的研究工作已經(jīng)取得了一定的進展,但是由于WOLED器件發(fā)光機理較為復(fù)雜,影響因素比較多,性能不容易調(diào)控,因此對于WOLED的工作機制還需要更為深入的探索。本文通過制備簡單結(jié)構(gòu)WOLED,單發(fā)光層WOLED和多發(fā)光層WOLED,分析了材料性質(zhì)、有機層厚度、界面勢壘等因素對于WOLED載流子的傳輸與復(fù)合的影響,通過一系列實驗,分析載流子捕獲與能量傳遞兩種發(fā)光機制。論文的具體分為以下幾個部分:1.制備簡單結(jié)構(gòu)白光器件。器件中的有機層只有發(fā)光層,變化以CBP:Ir(MPCPPZ)3,Tmpypb:Firpic作為橙光和藍光發(fā)光層的厚度,研究發(fā)光層厚度對于載流子傳輸及復(fù)合區(qū)域的影響。制備的簡單結(jié)構(gòu)WOLED,CIE(0.36,0.38),最大電流效率21.3 cd/A,啟亮電壓5.5 V。但是,在簡單結(jié)構(gòu)WOLED中要想同時優(yōu)化效率和啟亮電壓是十分困難的,我們通過引入電子傳輸層Tmpypb解決了這一問題,將啟亮電壓降至3.3 V,最大電流效率23.59 cd/A,CIE(0.36,0.38)。2.制備多發(fā)光層白光器件。以CBP和TCTA分別作為空穴傳輸層探討空穴傳輸層/發(fā)光層界面勢壘對于載流子傳輸?shù)挠绊?變化藍光主體Tmpypb為TCTA,研究發(fā)光主體載流子傳輸性質(zhì)對于復(fù)合區(qū)域的影響以及發(fā)光層之間的相互作用。最終優(yōu)化出結(jié)構(gòu)為MoO3(5 nm)/NPB(60 nm)/TCTA(5 nm)/CBP:Ir(MPCPPZ)3(6%,10 nm)/TCTA:Firpic(8%,10 nm)/Tmpypb(35 nm)/Cs2CO3(2 nm)/Al(120nm)的多發(fā)光層WOLED,器件最大電流效率可以達到25.25 cd/A,CIE(0.32,0.33),啟亮電壓3.5 V。3.制備單發(fā)光層白光器件。通過選擇三線態(tài)能級不同的CBP和TCTA做主體材料制備單發(fā)光層WOLED,分析單電子器件、發(fā)射吸收光譜等表征實驗,深入研究單發(fā)光層WOLED中能量傳遞和載流子捕獲這兩種發(fā)光機制及其對器件性能的影響,并且,通過變化空穴傳輸層材料,探討主體材料和空穴傳輸層的關(guān)系對于單發(fā)光層WOLED的影響。優(yōu)化出結(jié)構(gòu)為ITO/MoO3(5 nm)/CBP(35 nm)/CBP:Firpic:(PQxD)2Ir(TP)(5%,0.4%,15 nm)/Tmpypb(35 nm)/Cs2CO3(2 nm)/Al(120 nm)的單發(fā)光層WOLED,最大電流效率為38.81 cd/A,啟亮電壓3.1 V,CIE(0.32,0.39)。
[Abstract]:Due to its excellent performance in efficiency, brightness, power consumption, angle of view, response speed, ultra-thin and ultra-light, flexibility and solid state luminescence, white organic light emitting diodes have attracted wide attention since its birth. Although some progress has been made in the research of WOLED, the mechanism of WOLED is more complex, the influence factors are more, and the performance is not easy to control, so the working mechanism of WOLED still needs to be further explored. In this paper, simple structure WOLED, single light-emitting layer WOLED and multi-light-emitting layer WOLED are prepared. The effects of material properties, organic layer thickness and interface barrier on the transport and recombination of WOLED carriers are analyzed, and a series of experiments are carried out. Two mechanisms of carrier capture and energy transfer are analyzed. The thesis is divided into the following parts: 1. The white light device with simple structure was fabricated. There is only luminescence layer in the organic layer of the device. The thickness of the orange and blue luminescent layer is CBP: Irn MPCPPZ _ 3 and Tmpypb: Firpic. The influence of the luminous layer thickness on the carrier transport and the recombination region is studied. A simple structure, WOLEDX CIEO 0.36, 0.38, with maximum current efficiency of 21.3 cdp / A, and an on-off voltage of 5.5 V. However, it is very difficult to optimize the efficiency and the switching on voltage simultaneously in the simple structure WOLED. We solve this problem by introducing Tmpypb, which reduces the starting voltage to 3.3 V, and the maximum current efficiency is 23.59 cdP / A CIEE 0.36 / 0.38 0.38. 2. Multilayer white light devices were fabricated. Using CBP and TCTA as the hole transport layer, the influence of the interface barrier of the hole transport layer / luminous layer on the carrier transport is discussed. The blue light host Tmpypb is changed to TCTA.The influence of carrier transport property of luminescent host on the recombination region and the interaction between luminescent layers are studied. Finally, the multilayer WO Ds with the structure of Moo _ 3N _ 3N ~ (5) N ~ (mb) / T _ CCTA-5nm ~ + / CBP ~ (Irn) MPCPPZN ~ (36) 10 nm ~ (-1) TCTA: first ~ (10) nm ~ (8) Tmpypbb ~ (35) NM / C ~ (2) CO _ (3) ~ (2) N ~ (m) Aln ~ (12) NM) have been optimized. The maximum current efficiency of the device can reach 25.25 cdAn / r CIE0.32 ~ (0.33), and the starting voltage is 3.5 V. ~ (3) N ~ (-1). The maximum current efficiency of the device can be up to 25.25 cm / r ~ (-1) ~ (?) = 0.32n / 0.33. A single luminous layer white light device was fabricated. By selecting CBP and TCTA with different three-line energy levels as the main materials, the single luminescent layer WOLED was prepared, and the single electron devices and emission absorption spectra were analyzed. The effects of energy transfer and carrier capture on the performance of single light-emitting layer (WOLED) are studied, and the hole-transfer layer material is changed by changing the hole-transfer layer material. The effect of the relationship between the main material and the hole transport layer on the single light-emitting layer WOLED is discussed. The single layer WOLED with the structure of ITO / Moo _ 3 / 5 nm / CBP ~ (35) NM / CBP: first ~ (I) = PQ _ (x) DX ~ (2) ~ (2) Irn ~ (2) ~ (15) ~ (15) nmand ~ (35) nm ~ (-1) C _ (2CO _ 3N ~ (3), the maximum current efficiency is 38.81 cdA, and the switching voltage is 3.1 V ~ (CIE0.32) ~ (0.39).
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN383.1
【參考文獻】
相關(guān)期刊論文 前2條
1 劉佰全;高棟雨;王劍斌;王曦;王磊;鄒建華;寧洪龍;彭俊彪;;白光有機發(fā)光二極管的研究進展[J];物理化學(xué)學(xué)報;2015年10期
2 Baiquan Liu;Miao Xu;Lei Wang;Hong Tao;Yueju Su;Dongyu Gao;Linfeng Lan;Jianhua Zou;Junbiao Peng;;Very-High Color Rendering Index Hybrid White Organic Light-Emitting Diodes with Double Emitting Nanolayers[J];Nano-Micro Letters;2014年04期
,本文編號:2040672
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2040672.html
最近更新
教材專著