多孔陽極氧化鋁的“逆向工程”—刻蝕研究
本文選題:多孔陽極氧化鋁 + 刻蝕; 參考:《華南理工大學(xué)》2015年博士論文
【摘要】:陽極氧化是指利用電化學(xué)方法使金屬表面鈍化生成氧化膜的過程。鋁的陽極氧化已有一百多年的研究歷史,早期即在電解電容、金屬防腐蝕和表面裝飾等工業(yè)領(lǐng)域得到較廣的應(yīng)用。在最近二十年,多孔陽極氧化鋁(Porous anodic alumina,PAA)顯著的自組織行為的發(fā)現(xiàn)及其工藝簡(jiǎn)單、可控性高、成本低廉等優(yōu)點(diǎn)使其逐漸成為一種極具潛力的納米制備模板。目前,PAA在低維材料及相關(guān)器件制備方面已得到廣泛的應(yīng)用,在生物、新能源、傳感器、信息儲(chǔ)存等諸多新興領(lǐng)域發(fā)揮著重要作用。而在基礎(chǔ)研究方面,長(zhǎng)期以來,關(guān)于PAA的生長(zhǎng)機(jī)理至今仍存在不少疑問和分歧?涛g不僅是PAA模板制備過程中的一種常用工藝,同時(shí)也可以作為一種機(jī)理研究的有效手段。本論文主要利用濕化學(xué)法和離子束研磨的手段,分別從正面和背面對(duì)磷酸中生長(zhǎng)的PAA進(jìn)行刻蝕。通過電化學(xué)測(cè)試和掃描電鏡觀察系統(tǒng)分析PAA的刻蝕過程,并深入探討所反映的PAA生長(zhǎng)過程的重要信息。在研究PAA的正面刻蝕過程中,傳統(tǒng)的填孔法存在明顯的不足。脈沖陽極化測(cè)試采用脈沖式的測(cè)試信號(hào),可以彌補(bǔ)填孔法的不足。與此同時(shí),脈沖陽極化法還是研究陽極氧化的瞬態(tài)效應(yīng)以及穩(wěn)態(tài)的強(qiáng)場(chǎng)離子傳導(dǎo)過程的有效手段。本實(shí)驗(yàn)利用脈沖陽極化測(cè)試、電容測(cè)試和掃描電鏡表征的方法,獲得了PAA在正面刻蝕過程中陽極化電壓和阻擋層厚度隨刻蝕時(shí)間的變化。根據(jù)結(jié)果進(jìn)行估算,陽極氧化過程具有雙層結(jié)構(gòu)的阻擋層內(nèi)電場(chǎng)分布大致均勻。對(duì)比通過水熱處理生成的AlOOH/Al(OH)3以及特定電解液中在阻擋型膜表面形成的膠質(zhì)層的電學(xué)性質(zhì),可以確認(rèn)PAA的雙層結(jié)構(gòu)主要是通過固態(tài)過程形成的,而膠體化學(xué)過程并未如某些學(xué)者所認(rèn)為的那樣起到重要的作用。熱處理使PAA內(nèi)層和外層的化學(xué)刻蝕速率均降低;在強(qiáng)電場(chǎng)的作用下,經(jīng)熱處理的PAA阻擋層的化學(xué)刻蝕速率可以基本恢復(fù)到熱處理以前的狀態(tài)。這兩種過程均可以用PAA微觀結(jié)構(gòu)的可逆變化來解釋。在利用濕化學(xué)法和離子束研磨從背面對(duì)PAA阻擋層進(jìn)行刻蝕的過程中,均發(fā)現(xiàn)了元胞內(nèi)部圓周方向上顯著的且相互對(duì)應(yīng)的刻蝕各向異性。在元胞結(jié)點(diǎn)附近,刻蝕速率較高,從而形成凹陷;而在元胞邊界中點(diǎn)附近,刻蝕速率較低,逐漸形成凸起的脊。在足夠高的刻蝕襯比以及較大的孔徑和較薄的阻擋層的條件下,阻擋層剛穿孔時(shí)可以清晰地觀察到元胞中心附近的凹陷位置形成的對(duì)稱小孔。小孔的擴(kuò)大、合并以及中心殘余圓頂?shù)奶鷮?dǎo)致主要的規(guī)則圓孔的出現(xiàn)。這種新的開孔機(jī)制解釋了先前研究在阻擋層刻蝕過程中初始穿孔不規(guī)則的實(shí)驗(yàn)現(xiàn)象,并首次揭示了阻擋層開孔直徑與孔徑的關(guān)系及其隨刻蝕時(shí)間的變化規(guī)律。阻擋層背面刻蝕的各向異性難以用化學(xué)組成、表面曲率以及刻蝕液的擴(kuò)散速率等因素的差異來解釋,而更有可能是由殘余應(yīng)力的各向異性引起的。PAA元胞中心附近可能是壓縮應(yīng)力最大的區(qū)域,而在元胞邊界區(qū)域,壓縮應(yīng)力的極小值和極大值分別出現(xiàn)在元胞結(jié)點(diǎn)和元胞邊界中點(diǎn)附近。這種應(yīng)力分布應(yīng)該是具有特定幾何結(jié)構(gòu)的PAA元胞的內(nèi)在屬性,可以用生長(zhǎng)過程中相鄰元胞間的相互作用導(dǎo)致的應(yīng)力疊加以及由于物質(zhì)流動(dòng)速率差異而引起的應(yīng)力不均勻釋放來解釋。阻擋層背面刻蝕形成的圖案揭示了應(yīng)力分布與元胞排布的關(guān)系。正是在這種具有各向異性的應(yīng)力的直接驅(qū)動(dòng)下,元胞邊界的運(yùn)動(dòng)導(dǎo)致PAA的自組織行為,而這種驅(qū)動(dòng)力的大小與電流密度成正相關(guān);赑AA的可控刻蝕并結(jié)合生長(zhǎng)條件控制、熱處理等工藝,可以制備具有特定結(jié)構(gòu)的PAA模板。在第二步陽極氧化進(jìn)行合適的時(shí)間以后,通過較長(zhǎng)時(shí)間的化學(xué)刻蝕擴(kuò)孔,再進(jìn)行較短時(shí)間的陽極氧化,可以制備上層較厚且孔徑很大、而下層很薄且孔徑很小的漏斗形PAA模板。這種漏斗形PAA有可能替代超薄PAA作為刻蝕和沉積掩模使用,從而在模板制備和應(yīng)用過程中對(duì)操作的要求可以顯著降低。二步陽極氧化后,在500°C下對(duì)PAA樣品進(jìn)行熱處理,再重新陽極氧化使阻擋層的離子電導(dǎo)基本恢復(fù),最后進(jìn)行較長(zhǎng)時(shí)間的化學(xué)刻蝕,可以制備孔道底部一段直徑較大,而其余部分孔徑較小的滴管形PAA模板。這種結(jié)構(gòu)的PAA在藥物控釋方面有潛在的應(yīng)用價(jià)值,并對(duì)PAA模板的阻擋層減薄以及從鋁基上分離的工藝有參考意義。在滴管形PAA內(nèi)部孔徑突變結(jié)區(qū)域可以觀察到顯著的刻蝕各向異性。這種現(xiàn)象反映了阻擋層元胞內(nèi)電場(chǎng)及空間電荷分布的各向異性以及在熱處理和重新陽極氧化過程中的調(diào)整行為。利用熱處理替代水熱處理對(duì)通孔結(jié)構(gòu)的PAA進(jìn)行預(yù)晶化,再進(jìn)行足夠長(zhǎng)時(shí)間的化學(xué)刻蝕擴(kuò)孔,可以獲得結(jié)構(gòu)規(guī)則完整的內(nèi)層六方骨架。這種改進(jìn)方法簡(jiǎn)化了工藝流程,提高了工藝的穩(wěn)定性和重復(fù)性,并擴(kuò)大了適用范圍。在利用刻蝕制備特殊結(jié)構(gòu)的PAA的過程中,可以普遍采用電容法原位監(jiān)測(cè)樣品在各種條件下的刻蝕過程。這種方法簡(jiǎn)單易行,靈活有效,對(duì)縮短研究周期十分有利。
[Abstract]:Anodizing is the process of using electrochemical methods to passivate the metal surface to produce an oxide film. The anodic oxidation of aluminum has a history of more than 100 years, early in the industrial fields such as electrolytic capacitor, metal anticorrosion and surface decoration. In the last twenty years, the porous anodic alumina (Porous anodic alumina, PAA) The discovery of self-organized behavior and its simple process, high controllability and low cost make it a potential nanometer preparation template. At present, PAA has been widely used in the preparation of low dimensional materials and related devices, and plays an important role in many new fields, such as biology, new energy, sensor, information storage and so on. For a long time, there are still many questions and differences about the growth mechanism of PAA. Etching is not only a common process in the process of PAA template preparation, but also an effective means to study the mechanism. This paper mainly uses wet chemical method and ion beam grinding method, respectively from the front and the front. The PAA is etched on the back of phosphoric acid. The etching process of PAA is analyzed by electrochemistry and scanning electron microscopy, and the important information of the growth process of PAA is discussed. In the study of the positive etching process of PAA, the traditional hole filling method has obvious deficiency. Pulse positive test uses pulse test letter. At the same time, pulse anodization is an effective means to study the transient effect of anodic oxidation and the strong field ion conduction process in steady state. This experiment uses pulse positive polarization test, capacitance testing and scanning electron microscope characterization to obtain the polarization voltage and resistance of the PAA in the process of the frontal etching of Zhongyang. The thickness of the barrier thickness varies with the etching time. According to the results, the electric field distribution in the barrier layer of the double layer structure is roughly uniform according to the results. The electrical properties of the AlOOH/Al (OH) 3 generated by the hydrothermal treatment and the colloid layer formed on the surface of the barrier membrane in the specific electrolyte can confirm the main double layer structure of the PAA. It is formed by the solid process, and the colloidal chemical process does not play an important role as some scholars think. Heat treatment reduces the chemical etching rate of the inner and outer layers of PAA, and the chemical etching rate of the heat treated PAA barrier can be basically recovered to the state before heat treatment under the action of a strong electric field. Two All the processes can be explained by the reversible change in the microstructure of PAA. In the process of etching the PAA barrier layer from the back by the wet chemical method and the ion beam grinding, the significant and corresponding etching anisotropy in the circumferential circumferential direction of the cell is found, and the cell node is attached near, the etching rate is high, and the depression is formed. At the middle point of the cell boundary, the etching rate is low, and the ridge is gradually formed. Under the condition of enough high etching lining ratio and larger aperture and thinner barrier layer, the symmetrical small hole formed in the depression near the center of the cell can be clearly observed when the barrier layer has just perforated. The enlargement of the small holes, the merger and the central residual circle. The collapse of the top leads to the emergence of the main regular circular holes. This new opening mechanism explains the previous experimental phenomena of irregular initial perforation in the etching process of the barrier layer, and first revealed the relationship between the aperture diameter and the aperture of the barrier and its variation with the etching time. The anisotropy of the etching of the back layer is difficult to use. The difference in chemical composition, surface curvature and the diffusion rate of the etching solution is explained, and it is more likely that the.PAA cell center near the center of the residual stress may be the region with the largest compressive stress, while in the cell boundary region, the minimum and maximum of the compressive stress are present at the cellular node and the cell edge, respectively. The stress distribution should be the intrinsic property of the PAA cell with a specific geometric structure, which can be explained by the superposition of stress caused by intercellular interaction in the process of growth and the ununiform release of stress caused by the difference of material flow rate. The pattern formed by the etching on the back of the blocking layer reveals the need. It is the relationship between the force distribution and the cell arrangement. It is precisely under the direct drive of the anisotropic stress that the movement of the cellular boundary leads to the self organizing behavior of PAA, and the size of this driving force is positively related to the current density. Based on the controlled etching of the PAA and the control of the growth conditions, the heat treatment process can produce a specific junction. After second step anodization, after a suitable time of second step anodization, a long time chemical etching reaming and a shorter anodic oxidation can be used to prepare a funnel shaped PAA template with a thick upper layer and a very thin lower layer and a small aperture. This leaky bucket type PAA may replace ultra-thin PAA as etching and sinking. The requirements for operation in the preparation and application of the template can be significantly reduced. After two steps anodizing, the PAA sample is heat-treated at 500 C, and the ion conductance of the barrier layer is basically restored by anodizing, and a long time of chemical etching is carried out, and the diameter of the bottom section of the channel is larger. The other part of the smaller pore size PAA template. This structure has potential application value of PAA in drug controlled release. It has a reference significance to the thinning of the barrier layer of the PAA template and the separation process from the aluminum base. The significant etching anisotropy can be observed in the internal aperture mutation junction area of the burette shape PAA. This phenomenon is reflected in this phenomenon. The anisotropy of the electric field and space charge distribution in the barrier layer and the adjustment behavior in the process of heat treatment and anew anodic oxidation are used. The heat treatment is used to precrystallize the PAA of the porous structure by heat treatment instead of the hydrothermal treatment, and a long enough time of chemical etching reaming can be used to obtain the six square skeleton of the inner layer. The improved method simplifies the process flow, improves the stability and repeatability of the process, and expands the scope of application. In the process of using the etching to prepare the special structure of PAA, the capacitance method can be widely used to monitor the etching process in situ under various conditions. This method is simple, flexible and effective, and can shorten the study cycle very well. It's good.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN305.7
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 H.I.A.QAZI;M.SHARIF;S.HUSSAIN;M.A.BADAR;H.AFZAL;;Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J];Plasma Science and Technology;2013年09期
2 曹國寶;朱文;李鏡人;李振軒;;多孔陽極氧化鋁模板制備的研究進(jìn)展[J];材料導(dǎo)報(bào);2014年07期
3 張英;高斐;王皓石;劉生忠;劉庭卓;;鋁納米坑的制備及其對(duì)太陽電池光吸收的增強(qiáng)[J];電源技術(shù);2015年06期
4 王永強(qiáng);李娜;林蘇華;;不銹鋼點(diǎn)蝕研究概述[J];腐蝕科學(xué)與防護(hù)技術(shù);2015年04期
5 Lianjie Qin;Qijing Chen;Ruijun Lan;Runqian Jiang;Xiao Quan;Bin Xu;Feng Zhang;Yongmin Jia;;Effect of Anodization Parameters on Morphology and Photocatalysis Properties of TiO_2 Nanotube Arrays[J];Journal of Materials Science & Technology;2015年10期
6 Lin Fan;Zhi-Yong Liu;Wei-Min Guo;Jian Hou;Cui-Wei Du;Xiao-Gang Li;;A New Understanding of Stress Corrosion Cracking Mechanism of X80 Pipeline Steel at Passive Potential in High-pH Solutions[J];Acta Metallurgica Sinica(English Letters);2015年07期
7 趙成志;余姣姣;袁玉平;張賀新;任江波;;船舶海水管系鈦合金組織及腐蝕性能研究[J];特種鑄造及有色合金;2013年12期
8 鞠云;朱維東;王鵬程;;304不銹鋼在稀鹽酸中的電化學(xué)腐蝕行為[J];熱加工工藝;2014年06期
9 趙選榮;;鋁合金微弧氧化陶瓷層厚度及電解液對(duì)其耐蝕性的影響[J];鑄造技術(shù);2015年07期
10 李康;李文芳;張果戈;王敏;唐鵬;;表面刻蝕預(yù)處理對(duì)共晶Al-Si合金微弧氧化的影響(英文)[J];Chinese Journal of Chemical Engineering;2015年09期
相關(guān)博士學(xué)位論文 前9條
1 李rc;氧化鋁模板自還原法制備金屬及合金納米線的表征與應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2013年
2 常毅;大孔間距陽極氧化鋁及其雙層結(jié)構(gòu)的研究與應(yīng)用[D];華南理工大學(xué);2013年
3 史武軍;摻雜對(duì)鈦酸鍶光催化性質(zhì)影響的第一性原理研究[D];南京大學(xué);2013年
4 王春麗;海洋環(huán)境復(fù)雜偶合體系腐蝕行為研究[D];哈爾濱工程大學(xué);2013年
5 馮僑華;聚苯胺滲透納米孔Al_2O_3修飾硅基傳感器及氣敏特性研究[D];哈爾濱理工大學(xué);2014年
6 張金生;鋁合金陽極氧化膜表面狀態(tài)與粘接性能研究[D];北京化工大學(xué);2007年
7 任建軍;鋁陽極氧化膜的制備及自組織行為研究[D];北京化工大學(xué);2012年
8 張傳芳;過渡金屬氧化物/炭基復(fù)合材料的可控制備及其電化學(xué)行為研究[D];華東理工大學(xué);2015年
9 何凱;過渡金屬氧化物多級(jí)結(jié)構(gòu)的制備與尺寸調(diào)控[D];浙江大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張培;鋁合金陽極氧化膜結(jié)構(gòu)、制備工藝及顯微硬度的關(guān)系研究[D];北京化工大學(xué);2013年
2 李偉華;場(chǎng)發(fā)射DLC納米尖錐陣列的密度調(diào)控[D];蘭州大學(xué);2013年
3 吳俊俊;硅基多孔陽極氧化鋁模板的制備及性能研究[D];西北大學(xué);2013年
4 王慧;鋯基金屬玻璃Zr_(60.14)Cu_(22.31)Fe_(4.85)Al_(9.7)Ag_3腐蝕性研究[D];華中師范大學(xué);2013年
5 鄒章雄;新型無磁鉆鋌用高氮奧氏體不銹鋼的研究[D];云南大學(xué);2013年
6 董小帥;TTS443鐵素體不銹鋼腐蝕電化學(xué)性能的研究[D];太原理工大學(xué);2013年
7 王金花;納米CaWO_4的制備及其特性的研究[D];煙臺(tái)大學(xué);2013年
8 蔡輝;溶質(zhì)元素在鋁合金微弧氧化陶瓷膜層形成及生長(zhǎng)過程中的作用機(jī)理[D];西安理工大學(xué);2007年
9 袁玉平;船舶海水管系鈦合金設(shè)計(jì)及組織性能研究[D];哈爾濱工程大學(xué);2013年
10 劉書;預(yù)存氧化膜覆蓋下鋁的陽極氧化規(guī)律與多層納米結(jié)構(gòu)氧化膜的制備[D];湖南大學(xué);2013年
,本文編號(hào):1985300
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1985300.html