基于表面等離子體激元的濾波器與解波分復(fù)用器理論研究
發(fā)布時(shí)間:2018-06-02 23:29
本文選題:表面等離子體激元 + 濾波器; 參考:《西南大學(xué)》2017年碩士論文
【摘要】:表面等離子體激元是一種沿著金屬-介質(zhì)界面?zhèn)鞑サ碾姶疟砻娌?由于其表面增強(qiáng)和高度局域的特性,使得人們得以克服衍射極限,在亞波長尺度的金屬微結(jié)構(gòu)中實(shí)現(xiàn)對(duì)光的傳導(dǎo)和操控。目前,表面等離子體激元的理論研究趨于成熟,逐漸形成完善的學(xué)科,并在集成光學(xué)領(lǐng)域占有關(guān)鍵的一席之地;诒砻娴入x子體激元的應(yīng)用研究也已在多個(gè)領(lǐng)域取得突破進(jìn)展,包括集成波導(dǎo)、生物傳感檢測、納米光刻、數(shù)據(jù)存儲(chǔ)和新型光源等,從而極大地提升了光子器件的性能和光學(xué)回路的集成度。本文旨在幫助推進(jìn)納米尺度下光波的操控和光子器件設(shè)計(jì),因此,基于表面等離子體激元在集成波導(dǎo)方面的研究,我們提出一類新型的濾波器和解復(fù)用器。本論文主要的研究內(nèi)容如下:首先,根據(jù)金屬的Drude模型,基于麥克斯韋方程組,理論分析了表面等離子體激元的色散特性,并介紹了表面等離子體激元的四個(gè)特征參數(shù),以及根據(jù)波矢匹配在金屬表面將表面等離子體激元激發(fā)出來的方法。接著,介紹金屬-絕緣體-金屬(Metal-Insulator-Metal,MIM)波導(dǎo)結(jié)構(gòu)的原理和性質(zhì)。其次,簡要分析了本論文用到的研究方法,介紹了時(shí)域有限差分方法(Finite-Different Time-Domain,FDTD)的實(shí)現(xiàn)原理、激勵(lì)源設(shè)定、穩(wěn)定性要求和邊界條件等,并結(jié)合FDTD仿真軟件,對(duì)邊耦合和肩耦合這兩種諧振腔結(jié)構(gòu)的耦合模理論做了闡述,分析驗(yàn)證了它們的傳輸和反射特性。然后,基于交叉形MIM波導(dǎo)的傳輸特性,我們將其與一組六邊形諧振腔耦合,設(shè)計(jì)出一種新型的濾波器結(jié)構(gòu)。該結(jié)構(gòu)中,兩條MIM波導(dǎo)相互正交,構(gòu)成一個(gè)輸入端口和三個(gè)輸出信道。耦合模理論分析顯示,通過調(diào)整不同信道間的表面等離子體波之間的相位,可以使得濾波信道中的傳輸效率達(dá)到峰值。而這一過程可以直接通過調(diào)節(jié)諧振腔的位置來容易地實(shí)現(xiàn)。我們采用FDTD仿真對(duì)理論分析進(jìn)行了驗(yàn)證,此外,仿真顯示在該結(jié)構(gòu)中,通過調(diào)節(jié)耦合距離可以優(yōu)化傳輸效率和線寬,還可以調(diào)節(jié)腔體的邊長和填充介質(zhì)來實(shí)現(xiàn)工作波長的調(diào)諧。最后,基于交叉波導(dǎo)上濾波器的理論研究,我們設(shè)計(jì)出一種新型的解波分復(fù)用器。該結(jié)構(gòu)由一組十字交叉波導(dǎo)與三組六邊形諧振腔構(gòu)成,通過合理的布局,在三個(gè)信道中可以得到較為均衡的傳輸光譜,并最終得到較理想的傳輸效率和傳輸線寬,這說明該結(jié)構(gòu)能成功實(shí)現(xiàn)波導(dǎo)交叉中的三端口解復(fù)用,對(duì)于構(gòu)建復(fù)雜的光學(xué)系統(tǒng)和網(wǎng)絡(luò)具有極大的應(yīng)用潛力。
[Abstract]:Surface plasmon is a kind of electromagnetic surface wave propagating along the metal-dielectric interface. Due to its surface enhancement and highly localized characteristics, it is possible to overcome the diffraction limit. Light conduction and manipulation are realized in metal microstructures of subwavelength scale. At present, the theoretical research of surface plasmon has become mature, and gradually formed a perfect discipline, and plays a key role in the field of integrated optics. Applications based on surface plasmon have also made breakthroughs in many fields, including integrated waveguides, biosensor detection, nano-lithography, data storage and new light sources. Thus, the performance of photonic devices and the integration of optical circuits are greatly improved. The aim of this paper is to help promote the control of light waves and the design of photonic devices at nanometer scale. Therefore, based on the study of surface plasmon in integrated waveguides, we propose a new type of filter and demultiplexer. The main contents of this thesis are as follows: firstly, according to the Drude model of metals and Maxwell equations, the dispersion characteristics of surface plasmon are theoretically analyzed, and the four characteristic parameters of surface plasmon are introduced. And the method to excite the surface plasmon on the metal surface according to the wave vector matching. Then, the principle and properties of metal-insulator-MetalMIM) waveguide structure are introduced. Secondly, this paper briefly analyzes the research methods used in this paper, introduces the implementation principle of Finite-Different Time-Domain FDTD (Finite-Different Time-Domain FDTD), excitation source setting, stability requirements and boundary conditions, and combines with FDTD simulation software. The coupled mode theory of side-coupled and shoulder-coupled resonators is described and their transmission and reflection characteristics are analyzed and verified. Then, based on the transmission characteristics of cross-shaped MIM waveguides, we design a novel filter structure by coupling it with a group of hexagonal resonators. In this structure, two MIM waveguides are orthogonal to each other, forming one input port and three output channels. The coupling mode theory analysis shows that the transmission efficiency in the filtered channel can reach the peak by adjusting the phase between the surface plasma waves between different channels. This process can be easily realized by adjusting the position of the resonator directly. We use FDTD simulation to verify the theoretical analysis. In addition, the simulation shows that in this structure, the transmission efficiency and linewidth can be optimized by adjusting the coupling distance, and the wavelength tuning of the cavity can also be realized by adjusting the side length of the cavity and the filling medium. Finally, based on the theoretical study of filters on cross waveguides, we design a novel demultiplexer. The structure consists of a group of cross waveguides and three groups of hexagonal resonators. Through a reasonable arrangement, a more balanced transmission spectrum can be obtained in three channels, and an ideal transmission efficiency and transmission line width can be obtained. This shows that the structure can successfully realize the demultiplexing of three ports in waveguide crossing, and has great application potential for the construction of complex optical systems and networks.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN713
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 錢磊;吳東;謝向輝;;基于硅光子的片上光互連技術(shù)研究[J];計(jì)算機(jī)科學(xué);2012年05期
2 顧本源;;新興的表面等離子體光子學(xué)——在納米尺度上實(shí)現(xiàn)光子學(xué)與電子學(xué)完美聯(lián)姻[J];物理教學(xué);2008年02期
3 張彤,崔一平;集成光學(xué)國際研究進(jìn)展[J];電子器件;2004年01期
相關(guān)碩士學(xué)位論文 前2條
1 黃業(yè)雄;基于表面等離子體激元的新型納米傳感器的理論研究[D];西南大學(xué);2016年
2 樊艷娜;基于SPPs波導(dǎo)的光學(xué)特性研究[D];南京郵電大學(xué);2012年
,本文編號(hào):1970594
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1970594.html
最近更新
教材專著