基于LTCC技術(shù)的頻譜監(jiān)測設(shè)備接收機濾波器組的設(shè)計與實現(xiàn)
本文選題:LTCC技術(shù) + 頻譜監(jiān)測設(shè)備 ; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:隨著電磁環(huán)境日益復(fù)雜,頻譜監(jiān)測設(shè)備的應(yīng)用場合愈發(fā)豐富,用戶對其小型化和便攜性的要求也愈發(fā)迫切。因此,對其重要射頻子系統(tǒng)——接收機中占據(jù)大量空間的無源濾波器的小型化設(shè)計迫在眉睫。與常用于接收機的腔體、微帶、LC和聲表濾波器相比,LTCC(Low Temperature Co-fired Ceramic,LTCC,低溫共燒陶瓷)濾波器體積優(yōu)勢巨大,穩(wěn)定性和集成度很高;谝陨蟽(yōu)點,本文設(shè)計并實現(xiàn)了基于LTCC技術(shù)的頻譜監(jiān)測設(shè)備接收機的預(yù)選濾波器和中頻濾波器組。在綜合頻譜監(jiān)測設(shè)備接收機整機性能和LTCC濾波器本身的工藝特點的基礎(chǔ)上,計算出了LTCC預(yù)選和中頻濾波器的設(shè)計指標(biāo)要求。隨后以指標(biāo)要求為目標(biāo)通過理論推導(dǎo)得出濾波器諧振單元的諧振頻率和它們之間的耦合系數(shù)。在此基礎(chǔ)上,通過場路結(jié)合的方法對濾波器的結(jié)構(gòu)進行初步設(shè)計,再通過電磁仿真軟件ADS和HFSS等對濾波器諧振單元的諧振頻率、無載Q值以及它們之間的耦合系數(shù)等關(guān)鍵參數(shù)進行大量的迭代運算,最終得到最優(yōu)化的濾波器結(jié)構(gòu)。其中,預(yù)選濾波器主要采用了多層梳狀線結(jié)構(gòu)和多層矩形環(huán)結(jié)構(gòu)。通過一些創(chuàng)新性的設(shè)計,例如M形梳狀諧振器排列、改進型封裝構(gòu)造和多層諧振環(huán)交錯排列等,優(yōu)化了濾波器的多項參數(shù)。中頻濾波器主要采用集總參數(shù)形式的內(nèi)埋置LC電路結(jié)構(gòu)。研究了嵌套型內(nèi)埋置元件的設(shè)計方法,并做了一些結(jié)構(gòu)上的創(chuàng)新。在上述設(shè)計工作之外,制作了一套LTCC濾波器的PCB測試夾具。最終實現(xiàn)了通帶頻率范圍為3.9~4.9GHz、4.8~5.8GHz和5.5~6.3GHz等三個頻段的預(yù)選濾波器組和通帶頻率范圍為510~610MHz和DC~2GHz等兩個頻段的中頻濾波器組。測試結(jié)果顯示,這些濾波器在通帶范圍內(nèi)的插入損耗和駐波比均能夠達到設(shè)計要求?傮w來說,除中頻低通濾波器的高端帶外抑制稍差外,這些濾波器的性能良好,尺寸優(yōu)勢明顯。測試結(jié)果證實了設(shè)計的可行性,也說明該設(shè)計具有一定的工程應(yīng)用價值。
[Abstract]:With the increasing complexity of electromagnetic environment, the application of spectrum monitoring equipment is becoming more and more abundant, and the demand of users for its miniaturization and portability is becoming more and more urgent. Therefore, it is urgent to miniaturize the passive filter which occupies a large amount of space in the receiver, which is an important RF subsystem. Compared with the conventional cavity, microstrip LC and acoustic meter filter, the LTCC low Temperature Co-fired ceramic (low temperature co-fired ceramic) filter has a large volume advantage, high stability and high integration. Based on the above advantages, this paper designs and implements the pre-selected filter and if filter bank of the spectrum monitoring equipment receiver based on LTCC technology. On the basis of synthesizing the performance of the receiver of the spectrum monitoring equipment and the technological characteristics of the LTCC filter itself, the design requirements of the LTCC pre-selection and if filter are calculated. Then the resonant frequency of the resonant unit and the coupling coefficient between them are derived by theoretical derivation with the target of the target. On this basis, the structure of the filter is preliminarily designed by combining the field and circuit, and the resonant frequency of the resonant unit of the filter is obtained by the electromagnetic simulation software, such as ADS and HFSS, etc. The key parameters such as unloaded Q value and coupling coefficient between them are iterated and the optimal filter structure is obtained. The multilayer comb line structure and the multi-layer rectangular ring structure are mainly used in the pre-selected filter. Several parameters of the filter are optimized by some innovative design, such as M-shaped comb resonator arrangement, improved packaging structure and staggered arrangement of multi-layer resonant rings. If filter is mainly composed of embedded LC circuit with lumped parameters. The design method of nested embedded elements is studied, and some structural innovations are made. In addition to the above design work, a set of PCB test fixture for LTCC filter is made. Finally, a pre-selected filter bank with a passband frequency range of 3.9GHz 4.8GHz and a 5.5~6.3GHz band of 5.8GHz and an intermediate frequency filter bank with a passband frequency range of 510~610MHz and DC~2GHz are realized. The test results show that the insertion loss and VSWR of these filters in the passband range can meet the design requirements. In general, these filters have good performance and obvious size advantage, except for the slight difference of suppression in the high end band of if low pass filters. The test results confirm the feasibility of the design and show that the design has certain engineering application value.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN713
【參考文獻】
相關(guān)期刊論文 前10條
1 沈平;底海英;施朝著;彭艷君;賈寶富;;毫米波硅片集成MEMS濾波器[J];微波學(xué)報;2016年S1期
2 陳軍;朱曉維;居萬晨;;X波段微帶交叉耦合帶通濾波器的設(shè)計[J];微波學(xué)報;2014年02期
3 任水生;;基于頻譜分析儀的動態(tài)增益分配技術(shù)[J];國外電子測量技術(shù);2014年01期
4 劉冬冬;;矢量網(wǎng)絡(luò)分析儀校準項目探討[J];計量與測試技術(shù);2011年03期
5 姬臻杰;王海珍;馮哲;呂琴紅;;LTCC工藝自動切片技術(shù)[J];電子工藝技術(shù);2011年01期
6 楊潔;楊育;;無線電頻譜資源管理研究現(xiàn)狀分析[J];無線電工程;2008年09期
7 楊邦朝;付賢民;胡永達;;低溫共燒陶瓷(LTCC)技術(shù)新進展[J];電子元件與材料;2008年06期
8 邊國輝;方一波;吳小帥;;用于制造微波多芯片組件的LTCC技術(shù)[J];半導(dǎo)體技術(shù);2008年05期
9 王睿;王悅輝;周濟;杜波;;低溫共燒陶瓷技術(shù)及其應(yīng)用[J];硅酸鹽學(xué)報;2007年S1期
10 朱?;劉敏;周洪慶;;LTCC介質(zhì)材料的研究進展[J];材料導(dǎo)報;2006年S1期
相關(guān)會議論文 前1條
1 王瑞庭;;LTCC技術(shù)的發(fā)展和應(yīng)用[A];第十四屆全國混合集成電路學(xué)術(shù)會議論文集[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 錢可偉;基于LTCC技術(shù)的無源器件研究[D];電子科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 夏新運;微波實時頻譜分析儀射頻前端設(shè)計[D];電子科技大學(xué);2015年
2 邱康康;小型化頻譜監(jiān)測設(shè)備前端組件的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2014年
3 靳應(yīng)祥;一種組合型開關(guān)濾波器組的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2014年
,本文編號:1931963
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1931963.html